966 resultados para photoluminescence spectra
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The emission of wide band photoluminescence showed a synergic effect on barium zirconate and barium titanate thin films in alternate multilayer system at room temperature by 488 nm exiting wavelength. The thin films obtained by spin-coating were annealed at 350, 450, and 550 degrees C for 2 h. The X-ray patterns revealed the complete separation among the BaTiO3 and BaZrO3 phases in the adjacent films. Visible and intense photoluminescence was governed by BaZrO3 thin films in the multilayer system. Quantum mechanics calculations were used in order to simulate ordered and disordered thin films structures. The disordered models, which were built by using the displacement of formers and modifier networks, showed a different symmetry in each system, which is in accordance with experimental photoluminescence emission, thus allowing to establish a correlation among the structural and optical properties of these multilayered systems.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In this work Ba0.99Eu0.01MoO4 (BEMO) powders were prepared by the first time by the Complex Polymerization Method. The structural and optical properties of the BEMO powders were characterized by Fourier Transform Infra-Red (FTIR), X-ray Diffraction (XRD), Raman Spectra, High-Resolution Scanning Electron Microscopy (HR-SEM) and Photoluminescent Measurements. XRD show a crystalline scheelite-type phase after the heat treatment at temperatures greater than 400 degrees C. The ionic radius of Eu3+ (0.109 nm) is lower than the Ba2+ (0.149 nm) one. This difference is responsible for the decrease in the lattice parameters of the BEMO compared to the pure BaMoO4 matrix. This little difference in the lattice parameters show that Eu3+ is expected to occupy the Ba2+ site at different temperatures, stayed the tetragonal (S-4) symmetry characteristic of scheelite-type crystalline structures of BaMoO4. The emission spectra of the samples, when excited at 394 nm, presented the D-5(1)-> F-7(0, 1 and 2) and D-5(0)-> F-7(0, 1, 2, 3 and 4) Eu3+ transitions at 523, 533, 554, 578, 589, 614, 652 and 699 nm, respectively. The emission spectra of the powders heat-treated at 800 and 900 degrees C showed a marked increase in its intensities compared to the materials heat-treated from 400 to 700 C. The decay times for the sample were evaluated and all of them presented the average value of 0.61 ms. Eu3+ luminescence decay time follows one exponential curve indicating the presence of only one type of Eu3+ symmetry site.
Resumo:
Crystalline molybdate thin films were prepared by the complex polymerization method. The AMoO(4) (A = Ca, Sr, Ba) films were deposited onto Si wafers by the spinning technique. The Mo-O bond in the AMoO(4) structure was confirmed by FTIR spectra. X-ray diffraction revealed the presence of crystalline scheelite-type phase. The mass, size, and basicity of A(2+) cations was found to be dependent on the intrinsic characteristics of the materials. The grain size increased in the following order: CaMoO4 < SrMoO4 < BaMoO4. The emission band wavelength was detected at around 576 nm. Our findings suggest that the material's morphology and photoluminescence were both affected by the variations in cations (Ca, Sr, or Ba) and in the thermal treatment.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
O ácido canárico 1 foi isolado das folhas de Rudgea jasminoides. A substância isolada é um derivado triterpênico do tipo seco-lupano e teve sua estrutura elucidada com base nos dados espectrais, principalmente em experimentos de RMN a 1D e 2D. O sitosterol, o estigmasterol e os ácidos ursólico e oleanólico também foram isolados.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We report optical and morphological properties of poly(2-methoxy-5-hexyloxy-p-phenylenevinylene) (OC1OC6-PPV) films processed by casting, spin-coating (SC) and Langmuir-Blodgett (LB) techniques. The absorption spectra are practically the same, with an absorption maximum at approximately at 500 nm. For the photoluminescence (PL) spectra at low temperature (T=10K), a small but significant difference was noted in the cast film, in comparison with the LB and SC films. The zero-phonon transition shifted from 609 nm for the LB film to 615 and 621 nm for the SC and cast films, respectively. At room temperature, the PL spectra are similar for all films, and blue shifted by ca. 25 nm in comparison with the spectra at low temperature due to thermal disorder. Using atomic force microscopy (AFM) we inferred that the distinctive behavior of the cast film, probably associated with structural defects, is related to the large thickness of this film. The surface roughness, which was surprisingly higher for the LB film, apparently played no role in the emission properties of OC1OC6-PPV films.
Resumo:
Pilocarpine is a natural substance with potential application in the treatment of several diseases. In this work Fourier Transform (FT)-Raman spectrum and the Fourier Transform infra red (FT-IR) spectrum of pilocarpine hydrochloride C11H17N2O2+.Cl- were investigated at 300 K. Vibrational wavenumber and wave vector have been predicted using density functional theory (B3LYP) calculations with the 6-31 G(d,p) basis set. A comparison with experiment allowed us to assign most of the normal modes of the crystal.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Li2TiSiO5 powders were synthesized by the polymeric precursor method. The calcination temperatures were progressively increased until the complete crystallization of the phase occurring at 870 degreesC. For the first time, a strong photoluminescence was measured at room temperature with a 488 nm excitation wavelength for the non-crystalline samples. This photoluminescence in disordered phases has been interpreted by means of high-level quantum mechanical calculations based on density functional theory. Two periodic models have been used to represent the crystalline and disordered powders. They allowed to calculate electronic properties consistent with experimental data and to explain the relations between photoluminescence and structural disorder. (C) 2004 Elsevier B.V. All rights reserved.