992 resultados para phase diffusion
Resumo:
A simple percolation theory-based method for determination of the pore network connectivity using liquid phase adsorption isotherm data combined with a density functional theory (DFT)-based pore size distribution is presented in this article. The liquid phase adsorption experiments have been performed using eight different esters as adsorbates and microporous-mesoporous activated carbons Filtrasorb-400, Norit ROW 0.8 and Norit ROX 0.8 as adsorbents. The density functional theory (DFT)-based pore size distributions of the carbons were obtained using DFT analysis of argon adsorption data. The mean micropore network coordination numbers, Z, of the carbons were determined based on DR characteristic plots and fitted saturation capacities using percolation theory. Based on this method, the critical molecular sizes of the model compounds used in this study were also obtained. The incorporation of percolation concepts in the prediction of multicomponent adsorption equilibria is also investigated, and found to improve the performance of the ideal adsorbed solution theory (IAST) model for the large molecules utilized in this study. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
We propose a new method to investigate the thermal properties of QCD with a small quark chemical potential mu. Derivatives of quark and gluonic observables with respect to mu are computed at mu=0 for two flavors of p4 improved staggered fermions with ma=0.1,0.2 on a 16(3)x4 lattice, and used to calculate the leading order Taylor expansion in mu of the location of the pseudocritical point about mu=0. This expansion should be well behaved for the small values of mu(q)/T(c)similar to0.1 relevant for BNL RHIC phenomenology, and predicts a critical curve T-c(mu) in reasonable agreement with estimates obtained using exact reweighting. In addition, we contrast the case of isoscalar and isovector chemical potentials, quantify the effect of munot equal0 on the equation of state, and comment on the complex phase of the fermion determinant in QCD with munot equal0.
Resumo:
A thermodynamic approach is developed in this paper to describe the behavior of a subcritical fluid in the neighborhood of vapor-liquid interface and close to a graphite surface. The fluid is modeled as a system of parallel molecular layers. The Helmholtz free energy of the fluid is expressed as the sum of the intrinsic Helmholtz free energies of separate layers and the potential energy of their mutual interactions calculated by the 10-4 potential. This Helmholtz free energy is described by an equation of state (such as the Bender or Peng-Robinson equation), which allows us a convenient means to obtain the intrinsic Helmholtz free energy of each molecular layer as a function of its two-dimensional density. All molecular layers of the bulk fluid are in mechanical equilibrium corresponding to the minimum of the total potential energy. In the case of adsorption the external potential exerted by the graphite layers is added to the free energy. The state of the interface zone between the liquid and the vapor phases or the state of the adsorbed phase is determined by the minimum of the grand potential. In the case of phase equilibrium the approach leads to the distribution of density and pressure over the transition zone. The interrelation between the collision diameter and the potential well depth was determined by the surface tension. It was shown that the distance between neighboring molecular layers substantially changes in the vapor-liquid transition zone and in the adsorbed phase with loading. The approach is considered in this paper for the case of adsorption of argon and nitrogen on carbon black. In both cases an excellent agreement with the experimental data was achieved without additional assumptions and fitting parameters, except for the fluid-solid potential well depth. The approach has far-reaching consequences and can be readily extended to the model of adsorption in slit pores of carbonaceous materials and to the analysis of multicomponent adsorption systems. (C) 2002 Elsevier Science (USA).
Resumo:
In this paper the diffusion and flow of carbon tetrachloride, benzene and n-hexane through a commercial activated carbon is studied by a differential permeation method. The range of pressure is covered from very low pressure to a pressure range where significant capillary condensation occurs. Helium as a non-adsorbing gas is used to determine the characteristics of the porous medium. For adsorbing gases and vapors, the motion of adsorbed molecules in small pores gives rise to a sharp increase in permeability at very low pressures. The interplay between a decreasing behavior in permeability due to the saturation of small pores with adsorbed molecules and an increasing behavior due to viscous flow in larger pores with pressure could lead to a minimum in the plot of total permeability versus pressure. This phenomenon is observed for n-hexane at 30degreesC. At relative pressure of 0.1-0.8 where the gaseous viscous flow dominates, the permeability is a linear function of pressure. Since activated carbon has a wide pore size distribution, the mobility mechanism of these adsorbed molecules is different from pore to pore. In very small pores where adsorbate molecules fill the pore the permeability decreases with an increase in pressure, while in intermediate pores the permeability of such transport increases with pressure due to the increasing build-up of layers of adsorbed molecules. For even larger pores, the transport is mostly due to diffusion and flow of free molecules, which gives rise to linear permeability with respect to pressure. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The role of PACs (primary adsorption centers) in the mesopore (i.e., transport) region of activated carbons during adsorption of polar species, such as water, is unclear. A classical model of three-dimensional adsorption on finite PACs is presented. The model is a preliminary, theoretical investigation into adsorption on mesopore PACs and is intended to give some insight into the energetic and physical processes at work. Work processes are developed to obtain isotherms and three-dimensional sorbate growth on PACs of varying size and energetic characteristics. The work processes allow two forms of adsorbed phase growth: densification at constant boundary and boundary growth at constant density. Relatively strong sorbate-sorbent interactions and strong surface tension favor adsorbed phase densification over boundary growth. Conversely, relatively weak sorbate-sorbent interactions and weak surface tension favor boundary growth over densification. If sorbate-sorbate interactions are strong compared to sorbate-sorbent interactions, condensation with hysteresis occurs. This can also give rise to delayed boundary growth, where all initial adsorption occurs in the monolayer only. The results indicate that adsorbed phase growth on PACs may be quite complex.
Resumo:
Surface diffusion of strongly adsorbing hydrocarbon vapours on activated carbon was measured by using a constant molar flow method (D.D. Do, Dynamics of a semi-batch adsorber with constant molar supply rate: a method for studying adsorption rate of pure gas, Chem. Eng. Sci. 50 (1995) 549), where pure adsorbate is introduced into a semi-batch adsorber at a constant molar flow rate. The surface diffusivity was determined from the analysis of pressure response versus time, using a linear mathematical model developed earlier. To apply the linear theory over the non-linear range of the adsorption isotherm, we implement a differential increment method on the system which is initially equilibrated with some pre-determined loading. By conducting the experiments at different initial loadings, the surface diffusivity can be extracted as a function of loading. Propane, n-butane, n-hexane, benzene, and ethanol were used as diffusing adsorbate on a commercial activated carbon. It is found that the surface diffusivity of these strongly adsorbing vapours increases rapidly with loading, and the surface diffusion flux contributes significantly to the total flux and cannot be ignored. The surface diffusivity increases with temperature according to the Arrhenius law, and for the paraffins tested it decreases with the molecular weight of the adsorbate. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Expression of the beta(3) integrin subunit in melanoma in situ has been found to correlate with tumor thickness, the ability to invade and metastasize, and poor prognosis. Transition from the radial growth phase (RGP) to the vertical growth phase (VGP) is a critical step in melanoma progression and survival and is distinguished by the expression of beta(3), integrin. The molecular pathways that operate in melanoma cells associated with invasion and metastasis were examined by ectopic induction of the beta(3), integrin subunit in RGP SBcl2 and WM1552C melanoma cells, which converts these cells to a VGP phenotype. We used cDNA representational difference analysis subtractive hybridization between beta(3)-Positive and -negative melanoma cells to assess gene expression profile changes accompanying RGP to VGP transition. Fourteen fragments from known genes including osteonectin (also known as SPARC and BM-40) were identified after three rounds of representational difference analysis. Induction of osteonectin was confirmed by Northern and Western blot analysis and immunohistochemistry and correlated in organotypic cultures with the beta(3)-induced progression from RGP to VGP melanoma. Expression of osteonectin was also associated with reduced adhesion to vitronectin, but not to fibronectin. Osteonectin expression was not blocked when melanoma cells were cultured with anti-alpha(v)beta(3) LM609 mAb, mitogen-activated protein kinase, or protein kinase C inhibitors, indicating that other signaling pathway(s) operate through a(v)beta(3) integrin during conversion from RGP to VGP.
Resumo:
The compound Zr0.75Ce0.08Nd0.17O1.92 was investigated as part of a much larger electrical conductivity/microstructure study of the systems ZrO2-CeO2-M2O3 (where M=Nd, Sm, ..., Yb) [Solid State Ionics (2002)]. Electrical conductivity measurements performed in air at 800 degreesC showed significant conductivity degradation over a period of 200 h. Investigation of the annealed and as-fired specimens by ATEM revealed the presence of an emerging, ordered pyrochlore-type phase within the Zr0.75Ce0.08Nd0.17O1.92 defect-fluorite solid solution at much lower dopant levels than observed previously for zirconia binary systems. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Experimental studies on phase equilibria and liquidus in the multicomponent system PbO-ZnO-CaO-SiO2-FeO-Fe2O3 in air have been conducted over the temperature range between 1323 K (1050 degreesC) and 1623 K (1350 degreesC) to characterize the phase relations of the complex slag systems encountered in lead and zinc blast furnace sinters. The liquidus in two pseudoternary sections ZnO-Fe2O3-(PbO + CaO + SiO2) with the CaO/SiO2 weight ratio of 0.933 and PbO/(CaO + SiO2) weight ratios of 2.0 and 3.2 have been constructed.
Resumo:
Chk1 kinase coordinates cell cycle progression and preserves genome integrity. Here, we show that chemical or genetic ablation of human Chk1 triggered supraphysiological accumulation of the S phase-promoting Cdc25A phosphatase, prevented ionizing radiation (IR)-induced degradation of Cdc25A, and caused radioresistant DNA synthesis (RDS). The basal turnover of Cdc25A operating in unperturbed S phase required Chk1-dependent phosphorylation of serines 123, 178, 278, and 292. IR-induced acceleration of Cdc25A proteolysis correlated with increased phosphate incorporation into these residues generated by a combined action of Chk1 and Chk2 kinases. Finally, phosphorylation of Chk1 by ATM was required to fully accelerate the IR-induced degradation of Cdc25A. Our results provide evidence that the mammalian S phase checkpoint functions via amplification of physiologically operating, Chk1-dependent mechanisms.
Resumo:
Purpose. The flux of a topically applied drug depends on the activity in the skin and the interaction between the vehicle and skin. Permeation of vehicle into the skin can alter the activity of drug and the properties of the skin barrier. The aim of this in vitro study was to separate and quantify these effects. Methods. The flux of four radiolabeled permeants (water, phenol, diflunisal, and diazepam) with log K-oct/water values from 1.4 to 4.3 was measured over 4 h through heat-separated human epidermis pretreated for 30 min with vehicles having Hildebrand solubility parameters from 7.9 to 23.4 (cal/cm(3))(1/2). Results. Enhancement was greatest after pretreatment with the more lipophilic vehicles. A synergistic enhancement was observed using binary mixtures. The flux of diazepam was not enhanced to the same extent as the other permeants, possibly because its partitioning into the epidermis is close to optimal (log K-oct 2.96). Conclusion. An analysis of the permeant remaining in the epidermis revealed that the enhancement can be the result of either increased partitioning of permeant into the epidermis or an increasing diffusivity of permeants through the epidermis.
Resumo:
A series of 'pellicular' type supports were fabricated by direct gamma-radiation-mediated graft polymerisation of styrene onto polypropylene, followed by aminomethylation. Raman spectroscopy was used for measuring the level of penetration of polystyrene graft into polypropylene, and other structural features such as density of graft and depth of functionalisation. The kinetics of the coupling of fluorenylmethylcarbamate (Fmoc)-labelled amino acids, to the aminomethylated polystyrene grafts have been measured by UV absorption followed cleavage of the Fmoc chromophore. The Raman spectroscopy results showed that for this series of experiments the calculated rate coefficient for coupling of Fmoc-labelled amino acids was primarily dependent on graft thickness, but was also influenced by the proportion of polystyrene graft to polypropylene. In general, it was also shown that with increasing loading capacity of support the calculated rate coefficient for amino-acid coupling decreased correspondingly. In addition, a support that had both a high rate coefficient and a high loading capacity was prepared from polypropylene base material with a co-continuous porous structure (high surface area). (C) 2003 Society of Chemical Industry.
Resumo:
In this paper, we revisit the surface mass excess in adsorption studies and investigate the role of the volume of the adsorbed phase and its density in the analysis of supercritical gas adsorption in non-porous as well as microporous solids. For many supercritical fluids tested (krypton, argon, nitrogen, methane) on many different carbonaceous solids, it is found that the volume of the adsorbed phase is confined mostly to a geometrical volume having a thickness of up to a few molecular diameters. At high pressure the adsorbed phase density is also found to be very close to but never equal or greater than the liquid phase density. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
This paper presents a new model based on thermodynamic and molecular interaction between molecules to describe the vapour-liquid phase equilibria and surface tension of pure component. The model assumes that the bulk fluid can be characterised as set of parallel layers. Because of this molecular structure, we coin the model as the molecular layer structure theory (MLST). Each layer has two energetic components. One is the interaction energy of one molecule of that layer with all surrounding layers. The other component is the intra-layer Helmholtz free energy, which accounts for the internal energy and the entropy of that layer. The equilibrium between two separating phases is derived from the minimum of the grand potential, and the surface tension is calculated as the excess of the Helmholtz energy of the system. We test this model with a number of components, argon, krypton, ethane, n-butane, iso-butane, ethylene and sulphur hexafluoride, and the results are very satisfactory. (C) 2002 Elsevier Science B.V. All rights reserved.