927 resultados para organic photonic materials
Resumo:
To avoid the limitation of the widely used prediction methods of soil organic carbon partition coefficients (K-OC) from hydrophobic parameters, e.g., the n-octanol/water partition coefficients (K-OW) and the reversed phase high performance liquid chromatographic (RP-HPLC) retention factors, the soil column liquid chromatographic (SCLC) method was developed for K-OC prediction. The real soils were used as the packing materials of RP-HPLC columns, and the correlations between the retention factors of organic compounds on soil columns (k(soil)) and K-OC measured by batch equilibrium method were studied. Good correlations were achieved between k(soil) and K-OC for three types of soils with different properties. All the square of the correlation coefficients (R-2) of the linear regression between log k(soi) and log K-OC were higher than 0.89 with standard deviations of less than 0.21. In addition, the prediction of K-OC from K-OW and the RP-HPLC retention factors on cyanopropyl (CN) stationary phase (k(CN)) was comparatively evaluated for the three types of soils. The results show that the prediction of K-OC from k(CN) and K-OW is only applicable to some specific types of soils. The results obtained in the present study proved that the SCLC method is appropriate for the K-OC prediction for different types of soils, however the applicability of using hydrophobic parameters to predict K-OC largely depends on the properties of soil concerned. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
This paper reviews the recent progress made in the asymmetric synthesis on chiral catalysts in porous materials and discusses the effects of surface and pores on enantio-selectivity (confinement effect). This paper also summarizes various approaches of immobilization of the chiral catalysts onto surfaces and into pores of solid inorganic supports such as microporous and mesoporous materials. The most important reactions surveyed for the chiral synthesis in porous materials include epoxidation. hydrogenation, hydroformylation, Aldol and Diels-Alder reactions, etc. The confinement effect originated from the surfaces and the pores turns out to be a general phenomenon. which may make the enantioselectivity increase (positive effect) or decrease (negative effect). The confinement effect becomes more pronounced particularly when the bonding between the catalyst and the surface is more rigid and the pore size is tuned to a suitable range. It is proposed that the confinement in chiral synthesis is essentially a consequence of subtle change in transition states induced by weak-interaction in pores or on surfaces. It is also anticipated that the enantioselectivity could be improved by tuning the confinement effect based on the molecular designing of the pore/surface and the immobilized catalysts according to the requirements of chiral reactions.
Resumo:
The thermal and flame-retardant properties of homo- and copolyimides were evaluated. Those containing sulfone linkages in the backbone were found to be more flame retardant. Both properties were dependent on the composition. A polyimide/silica nanocomposite was obtained through sol-gel processing. The effects of the addition of silica an the dispersion, interfacial adhesion, fire resistance, mechanical properties, and thermal stability of the composites were investigated. SEM analysis showed a good dispersion of silica with a diameter of 50-300 nm in the organic matrices. The addition of silica increased the fire retardancy and mechanical properties of the composites. (C) 2000 John Wiley & Sons, Inc.
Resumo:
A method for measuring the long- and medium-term turnover of soil organic matter is described. Its principle is based on the variations of 13C natural isotope abundance induced by the repeated cultivations of a plant with a high 13C/12C ratio (C4 photosynthetic pathway) on a soil which has never carried any such plant. The 13C/12C ratio in soil organic matter being about equal to the 13C/12C ratio of plant materials from which it is derived, changing the 13C content of the organic inputs to the soil (by altering vegetation from C3 type into C4 type) is equivalent to a true labelling in situ of the organic matter. Two cases of continuous corn cultivation (Zea mays: δ13C = −12%.) on soils whose initial organic matter average δ13C is −26%. were studied. The quantity of organic carbon originating from corn (that is the quantity which had turned-over since the beginning of continuous cultivation) was estimated using the 13C natural abundance data. After 13 yr, 22% of total organic carbon had turned-over, in the system studied. Particle size fractions coarser than 50μm on the one hand, and finer than 2μm on the other. contained the youngest organic matters. The turnover rate of silt-sized fractions was slower
Resumo:
A bipolar transport compound, 2,5-bis(4-(9-(2-ethylhexyl)-9H-carbazol-3-yl) phenyl)-1,3,4-oxadiazole (CzOXD), incorporating both electron-and hole-transport functionalities, was synthesized and fully characterized by H-1 NMR, C-13 NMR, elemental analysis and mass spectrometry. Its thermal, electrochemical, electronic absorption and photoluminescent properties were studied
Resumo:
An amorphous photoluminescent material based on a dithienylbenzothiadiazole structure has been used for the fabrication of organic red-light-emitting diodes. The synergistic effects of the electron-transport ability and exciton confinement of the emitting material allow for the fabrication of efficient pure-red-light-emitting devices without a hole blocker.
Resumo:
A new metal-free organic sensitizer (see figure) for high-performance and applicable dye-sensitized solar cells is presented. In combination with a solvent-free ionic liquid electrolyte, a similar to 7% cell made with this sensitizer shows all excellent stability measured under thermal and light-soaking dual stress. For the first time a 4.8% efficiency is reached for all-solid-state dye-sensitized solar cells based oil all organic dye.
Resumo:
Organic-inorganic hybrid nanofibers are successfully synthesized by incorporating 3,3 ',5,5 '-tetramethylbenzidine (TMB) and H2PtCl6 at room temperature. The morphology and size can be simply controlled by tuning the molar ratio and initial concentration of reactants. A possible formation mechanism was suggested on the basis of the experimental results. The optical properties were investigated and the as-obtained product displays a strong fluorescence emission at room temperature that may be promising for applications in the fabrication of photoelectric materials. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We realized ambipolar transport behavior in field-effect transistors by using p-p isotype heterojunction films as active layers, which consisted of two p-type semiconductor materials, 2, 2'; 7', 2 ''-terphenanthrenyl (Ph3) and vanadyl-phthalocyanine (VOPc). The ambipolar charge transport was attributed to the interfacial electronic structure of Ph3-VOPc isotype heterojunction, and electrons and holes were accumulated at both sides of the narrow band-gap VOPc and the wide band-gap Ph3, respectively, which were confirmed by the capacitance-voltage relationship of metal-oxide-semiconductor diodes. The accumulation thickness of carriers was also obtained by changing the heterojunction active layer thickness. Furthermore, the results indicate that the device performance is relative to interfacial electronic structures.
Resumo:
We report the effect of n-n isotype organic heterojunction consisting of copper hexadecafluorophthalocyanine (F16CuPc) and phthalocyanatotin (IV) dichloride (SnCl2Pc). Their interfacial electronic structure was observed by Kelvin probe force microscopy (KPFM), and there is band bending in two materials, resulting in an electron accumulation region in F16CuPc layer and an electron depletion region in SnCl2Pc layer. The forming of organic heterojunction was explained by carriers flowing through the interface due to thermal emission of electrons. Furthermore, the carrier transport behavior parallel and vertical to heterojunction interface was also revealed by their heterojunction field-effect transistor with normally on operation mode and heterojunction diodes with rectifying property.
Resumo:
A series of novel red-emitting iridium dendrimers functionalized with oligocarbazole host dendrons up to the third generation (red-G3) have been synthesized by a convergent method, and their photophysical, electrochemical, and electroluminescent properties have been investigated. In addition to controlling the intermolecular interactions, oligocarbazole-based dendrons could also participate in the electrochemical and charge-transporting process. As a result, highly efficient electrophosphorescent devices can be fabricated by spin-coating from chlorobenzene solution in different device configurations.
Resumo:
Urea bridged organic-inorganic hybrid mesoporous SiO2 materials (U-BSQMs) were synthesized through a sol-gel procedure by co-condensation of bis(triethoxysilyl propyl) urea (BSPU) under basic conditions using cetyltrimethylammonium bromide (CTAB) as organic template. X-ray diffraction (XRD) and transmission electron microscopy (TEM) confirmed the mesoporous structure of the sample. Fourier-transform infrared spectroscopy (FT-IR), solid state CP-MAS NMR spectroscopy of Si-29 (Si-29, CP-MAS NMR) and C-13 (C-13 CP NMR) indicated that most of the Si-C bonds are unbroken during the synthesis process.
Resumo:
Phthalocyanato tin(IV) dichloride, an axially dichloriniated MPc, is an air-stable high performance n-type organic semiconductor with a field-effect electron mobility of up to 0.30 cm(2) V-1 s(-1). This high mobility together with good device stability and commercial availability makes it a most suitable n-type material for future organic thin-film transistor applications.
Resumo:
P-type copper phthalocyanine (CuPc) and n-type hexadecafluorophthalocyanina-tocopper (F16CuPc) polycrystalline films were investigated by Kelvin probe force microscopy (KPFM). Topographic and corresponding surface potential images are obtained simultaneously. Surface potential images are related with the local work function of crystalline facets and potential barriers at the grain boundaries (GBs) in organic semiconductors. Based on the spatial distribution of surface potential at GBs, donor- and acceptor-like trapping states in the grain boundaries (GBs) of p-CuPc and n-F16CuPc films are confirmed respectively.