999 resultados para organic extracts
Resumo:
Metabolite profiling is critical in many aspects of the life sciences, particularly natural product research. Obtaining precise information on the chemical composition of complex natural extracts (metabolomes) that are primarily obtained from plants or microorganisms is a challenging task that requires sophisticated, advanced analytical methods. In this respect, significant advances in hyphenated chromatographic techniques (LC-MS, GC-MS and LC-NMR in particular), as well as data mining and processing methods, have occurred over the last decade. Together, these tools, in combination with bioassay profiling methods, serve an important role in metabolomics for the purposes of both peak annotation and dereplication in natural product research. In this review, a survey of the techniques that are used for generic and comprehensive profiling of secondary metabolites in natural extracts is provided. The various approaches (chromatographic methods: LC-MS, GC-MS, and LC-NMR and direct spectroscopic methods: NMR and DIMS) are discussed with respect to their resolution and sensitivity for extract profiling. In addition the structural information that can be generated through these techniques or in combination, is compared in relation to the identification of metabolites in complex mixtures. Analytical strategies with applications to natural extracts and novel methods that have strong potential, regardless of how often they are used, are discussed with respect to their potential applications and future trends.
Resumo:
A newsletter produced by Iowa Department of Agriculture and Land Stewardship about the changes of organic farming and raising livestock in Iowa.
Resumo:
A newsletter produced by Iowa Department of Agriculture and Land Stewardship about the changes of organic farming and raising livestock in Iowa.
Resumo:
A newsletter produced by Iowa Department of Agriculture and Land Stewardship, this information is all about Iowa growers, what is new, what is going on around Iowa for growing.
Resumo:
The drug discovery process has been deeply transformed recently by the use of computational ligand-based or structure-based methods, helping the lead compounds identification and optimization, and finally the delivery of new drug candidates more quickly and at lower cost. Structure-based computational methods for drug discovery mainly involve ligand-protein docking and rapid binding free energy estimation, both of which require force field parameterization for many drug candidates. Here, we present a fast force field generation tool, called SwissParam, able to generate, for arbitrary small organic molecule, topologies, and parameters based on the Merck molecular force field, but in a functional form that is compatible with the CHARMM force field. Output files can be used with CHARMM or GROMACS. The topologies and parameters generated by SwissParam are used by the docking software EADock2 and EADock DSS to describe the small molecules to be docked, whereas the protein is described by the CHARMM force field, and allow them to reach success rates ranging from 56 to 78%. We have also developed a rapid binding free energy estimation approach, using SwissParam for ligands and CHARMM22/27 for proteins, which requires only a short minimization to reproduce the experimental binding free energy of 214 ligand-protein complexes involving 62 different proteins, with a standard error of 2.0 kcal mol(-1), and a correlation coefficient of 0.74. Together, these results demonstrate the relevance of using SwissParam topologies and parameters to describe small organic molecules in computer-aided drug design applications, together with a CHARMM22/27 description of the target protein. SwissParam is available free of charge for academic users at www.swissparam.ch.
Resumo:
Analiza la cantidad de carbon organico y nitrogeno en las costas del norte del Perú en noviembre de 1977
Resumo:
Effect of Citrus floral extracts on the foraging behavior of the stingless bee Scaptotrigona pectoralis (Dalla Torre). Stingless bees have an important role as pollinators of many wild and cultivated plant species in tropical regions. Little is known, however, about the interaction between floral fragrances and the foraging behavior of meliponine species. Thus we investigated the chemical composition of the extracts of citric (lemon and orange) flowers and their effects on the foraging behavior of the stingless bee Scaptotrigona pectoralis. We found that each type of flower has its own specific blend of major compounds: limonene (62.9%) for lemon flowers, and farnesol (26.5%), (E)-nerolidol (20.8%), and linalool (12.7%) for orange flowers. In the foraging experiments the S. pectoralis workers were able to use the flower extracts to orient to the food source, overlooking plates baited with hexane only. However, orange flower extracts were seemingly more attractive to these worker bees, maybe because of the particular blend present in it. Our results reveal that these fragrances are very attractive to S. pectoralis, so we can infer that within citric orchards they could be important visitors in the study area; however habitat destruction, overuse of pesticides and the competitive override by managed honeybees might have put at risk their populations and thus the ecological services they provide to us.
Resumo:
Calcium carbonate nanofibres are found in numerous terrestrial environments, often associated with needle fibre calcite. This study attempts to mimic the natural system and generate comparable crystalline structures. A comparison of natural and synthesized nanofibre structures, using HRTEM as well as electron energy loss spectroscopy (EELS) and electron spectroscopic imaging (ESI), has demonstrated that this type of nanocrystal can result from precipitation on organic templates, most likely cellulose nanofibres. This study emphasizes the fundamental role of organic templates in the precipitation of calcium carbonate in vadose environments, even at the nanoscale.
Resumo:
Newsletter produced by Iowa Department of Agriculture and Land Stewardship about Organic News in farming.
Resumo:
Newsletter produced by Iowa Department of Agriculture and Land Stewardship about Organic News in farming.
Resumo:
Newsletter produced by Iowa Department of Agriculture and Land Stewardship about Organic News in farming.
Resumo:
Newsletter produced by Iowa Department of Agriculture and Land Stewardship about Organic News in farming.
Resumo:
Newsletter produced by Iowa Department of Agriculture and Land Stewardship about Organic News in farming.
Resumo:
Newsletter produced by Iowa Department of Agriculture and Land Stewardship about Organic News in farming.