995 resultados para oral pathogens


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The monitoring of oral disease is important, not alone for oral health, but for the detection and prevention of
systemic disease. The link between oral health and systemic disease is the focus of many studies, with
indications emerging of a causal link [1]. For disease diagnostics, blood has typically been the fluid of choice
for analysis, the retrieval of which is invasive and therefore unsuitable for wearable technology. Analysis of
saliva, however, is less invasive than that of blood, requires little or no pre-treatment and is abundantly
available. A strong correlation has been found between the analytes of blood and saliva [2] with saliva
containing biomarkers for diseases such as diabetes, oral cancer and cardiovascular disease. The development of
an implantable multi-parametric wireless sensor, to monitor both salivary analytes and changes in gingival
temperature, is the aim of this research project.
The aim of our current study is to detect changes in salivary pH, using a gold electrode with a pHsensitive
iridium oxide layer, and an Ion Sensitive Field Effect Transistor probe. Characterisation studies were
carried out in artificial saliva (AS). A salivary pH of between 4.5pH-7.5pH [3], and gingival temperature
between 35°C-38°C [4], were identified as the target range of interest for the human oral environment. Sensor
measurements were recorded in solutions of varying pH and temperature. An ISFET probe was then implanted
into a prototype denture and characterised in AS. This study demonstrates the suitability of ISFET and gold
electrode pH sensors for incorporation into implantable oral sensors.
[1] G. Taylor and W. Borgnakke, “Periodontal disease: associations with diabetes, glycemic control and
complications,” Oral Dis., vol. 14, no. 3, pp. 191–203, Apr. 2008.
[2] E. Tékus, M. Kaj, E. Szabó, N. L. Szénási, I. Kerepesi, M. Figler, R. Gábriel, and M. Wilhelm,
“Comparison of blood and saliva lactate level after maximum intensity exercise,” Acta Biol. Hung., vol. 63
Suppl 1, pp. 89–98, 2012.
[3] S. Naveen, M. L. Asha, G. Shubha, A. Bajoria, and A. Jose, “Salivary Flow Rate, pH and Buffering
Capacity in Pregnant and Non Pregnant Women - A Comparative Study,” JMED Res., pp. 1–8, Feb. 2014.
[4] A. F. Holthuis and F. S. Chebib, “Observations on temperature and temperature patterns of the gingiva. I.
The effect of arch, region and health,” J. Periodontol., vol. 54, no. 10, pp. 624–628, Oct. 1983

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bdellovibrio bacteriovorus is a bacterium which preys upon and kills Gram-negative bacteria, including the zoonotic pathogens Escherichia coli and Salmonella. Bdellovibrio has potential as a biocontrol agent, but no reports of it being tested in living animals have been published, and no data on whether Bdellovibrio might spread between animals are available. In this study, we tried to fill this knowledge gap, using B. bacteriovorus HD100 doses in poultry with a normal gut microbiota or predosed with a colonizing Salmonella strain. In both cases, Bdellovibrio was dosed orally along with antacids. After dosing non-Salmonella-infected birds with Bdellovibrio, we measured the health and well-being of the birds and any changes in their gut pathology and culturable microbiota, finding that although a Bdellovibrio dose at 2 days of age altered the overall diversity of the natural gut microbiota in 28-day-old birds, there were no adverse effects on their growth and well-being. Drinking water and fecal matter from the pens in which the birds were housed as groups showed no contamination by Bdellovibrio after dosing. Predatory Bdellovibrio orally administered to birds that had been predosed with a gut-colonizing Salmonella enterica serovar Enteritidis phage type 4 strain (an important zoonotic pathogen) significantly reduced Salmonella numbers in bird gut cecal contents and reduced abnormal cecal morphology, indicating reduced cecal inflammation, compared to the ceca of the untreated controls or a nonpredatory ΔpilA strain, suggesting that these effects were due to predatory action. This work is a first step to applying Bdellovibrio therapeutically for other animal, and possibly human, infections.