858 resultados para optimization-based similarity reasoning


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nowadays, reducing energy consumption is one of the highest priorities and biggest challenges faced worldwide and in particular in the industrial sector. Given the increasing trend of consumption and the current economical crisis, identifying cost reductions on the most energy-intensive sectors has become one of the main concerns among companies and researchers. Particularly in industrial environments, energy consumption is affected by several factors, namely production factors(e.g. equipments), human (e.g. operators experience), environmental (e.g. temperature), among others, which influence the way of how energy is used across the plant. Therefore, several approaches for identifying consumption causes have been suggested and discussed. However, the existing methods only provide guidelines for energy consumption and have shown difficulties in explaining certain energy consumption patterns due to the lack of structure to incorporate context influence, hence are not able to track down the causes of consumption to a process level, where optimization measures can actually take place. This dissertation proposes a new approach to tackle this issue, by on-line estimation of context-based energy consumption models, which are able to map operating context to consumption patterns. Context identification is performed by regression tree algorithms. Energy consumption estimation is achieved by means of a multi-model architecture using multiple RLS algorithms, locally estimated for each operating context. Lastly, the proposed approach is applied to a real cement plant grinding circuit. Experimental results prove the viability of the overall system, regarding both automatic context identification and energy consumption estimation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work studies the combination of safe and probabilistic reasoning through the hybridization of Monte Carlo integration techniques with continuous constraint programming. In continuous constraint programming there are variables ranging over continuous domains (represented as intervals) together with constraints over them (relations between variables) and the goal is to find values for those variables that satisfy all the constraints (consistent scenarios). Constraint programming “branch-and-prune” algorithms produce safe enclosures of all consistent scenarios. Special proposed algorithms for probabilistic constraint reasoning compute the probability of sets of consistent scenarios which imply the calculation of an integral over these sets (quadrature). In this work we propose to extend the “branch-and-prune” algorithms with Monte Carlo integration techniques to compute such probabilities. This approach can be useful in robotics for localization problems. Traditional approaches are based on probabilistic techniques that search the most likely scenario, which may not satisfy the model constraints. We show how to apply our approach in order to cope with this problem and provide functionality in real time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ontologies formalized by means of Description Logics (DLs) and rules in the form of Logic Programs (LPs) are two prominent formalisms in the field of Knowledge Representation and Reasoning. While DLs adhere to the OpenWorld Assumption and are suited for taxonomic reasoning, LPs implement reasoning under the Closed World Assumption, so that default knowledge can be expressed. However, for many applications it is useful to have a means that allows reasoning over an open domain and expressing rules with exceptions at the same time. Hybrid MKNF knowledge bases make such a means available by formalizing DLs and LPs in a common logic, the Logic of Minimal Knowledge and Negation as Failure (MKNF). Since rules and ontologies are used in open environments such as the Semantic Web, inconsistencies cannot always be avoided. This poses a problem due to the Principle of Explosion, which holds in classical logics. Paraconsistent Logics offer a solution to this issue by assigning meaningful models even to contradictory sets of formulas. Consequently, paraconsistent semantics for DLs and LPs have been investigated intensively. Our goal is to apply the paraconsistent approach to the combination of DLs and LPs in hybrid MKNF knowledge bases. In this thesis, a new six-valued semantics for hybrid MKNF knowledge bases is introduced, extending the three-valued approach by Knorr et al., which is based on the wellfounded semantics for logic programs. Additionally, a procedural way of computing paraconsistent well-founded models for hybrid MKNF knowledge bases by means of an alternating fixpoint construction is presented and it is proven that the algorithm is sound and complete w.r.t. the model-theoretic characterization of the semantics. Moreover, it is shown that the new semantics is faithful w.r.t. well-studied paraconsistent semantics for DLs and LPs, respectively, and maintains the efficiency of the approach it extends.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Digital Businesses have become a major driver for economic growth and have seen an explosion of new startups. At the same time, it also includes mature enterprises that have become global giants in a relatively short period of time. Digital Businesses have unique characteristics that make the running and management of a Digital Business much different from traditional offline businesses. Digital businesses respond to online users who are highly interconnected and networked. This enables a rapid flow of word of mouth, at a pace far greater than ever envisioned when dealing with traditional products and services. The relatively low cost of incremental user addition has led to a variety of innovation in pricing of digital products, including various forms of free and freemium pricing models. This thesis explores the unique characteristics and complexities of Digital Businesses and its implications on the design of Digital Business Models and Revenue Models. The thesis proposes an Agent Based Modeling Framework that can be used to develop Simulation Models that simulate the complex dynamics of Digital Businesses and the user interactions between users of a digital product. Such Simulation models can be used for a variety of purposes such as simple forecasting, analysing the impact of market disturbances, analysing the impact of changes in pricing models and optimising the pricing for maximum revenue generation or a balance between growth in usage and revenue generation. These models can be developed for a mature enterprise with a large historical record of user growth rate as well as for early stage enterprises without much historical data. Through three case studies, the thesis demonstrates the applicability of the Framework and its potential applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Linear logic has long been heralded for its potential of providing a logical basis for concurrency. While over the years many research attempts were made in this regard, a Curry-Howard correspondence between linear logic and concurrent computation was only found recently, bridging the proof theory of linear logic and session-typed process calculus. Building upon this work, we have developed a theory of intuitionistic linear logic as a logical foundation for session-based concurrent computation, exploring several concurrency related phenomena such as value-dependent session types and polymorphic sessions within our logical framework in an arguably clean and elegant way, establishing with relative ease strong typing guarantees due to the logical basis, which ensure the fundamental properties of type preservation and global progress, entailing the absence of deadlocks in communication. We develop a general purpose concurrent programming language based on the logical interpretation, combining functional programming with a concurrent, session-based process layer through the form of a contextual monad, preserving our strong typing guarantees of type preservation and deadlock-freedom in the presence of general recursion and higher-order process communication. We introduce a notion of linear logical relations for session typed concurrent processes, developing an arguably uniform technique for reasoning about sophisticated properties of session-based concurrent computation such as termination or equivalence based on our logical approach, further supporting our goal of establishing intuitionistic linear logic as a logical foundation for sessionbased concurrency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The life of humans and most living beings depend on sensation and perception for the best assessment of the surrounding world. Sensorial organs acquire a variety of stimuli that are interpreted and integrated in our brain for immediate use or stored in memory for later recall. Among the reasoning aspects, a person has to decide what to do with available information. Emotions are classifiers of collected information, assigning a personal meaning to objects, events and individuals, making part of our own identity. Emotions play a decisive role in cognitive processes as reasoning, decision and memory by assigning relevance to collected information. The access to pervasive computing devices, empowered by the ability to sense and perceive the world, provides new forms of acquiring and integrating information. But prior to data assessment on its usefulness, systems must capture and ensure that data is properly managed for diverse possible goals. Portable and wearable devices are now able to gather and store information, from the environment and from our body, using cloud based services and Internet connections. Systems limitations in handling sensorial data, compared with our sensorial capabilities constitute an identified problem. Another problem is the lack of interoperability between humans and devices, as they do not properly understand human’s emotional states and human needs. Addressing those problems is a motivation for the present research work. The mission hereby assumed is to include sensorial and physiological data into a Framework that will be able to manage collected data towards human cognitive functions, supported by a new data model. By learning from selected human functional and behavioural models and reasoning over collected data, the Framework aims at providing evaluation on a person’s emotional state, for empowering human centric applications, along with the capability of storing episodic information on a person’s life with physiologic indicators on emotional states to be used by new generation applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present paper is a personal reflection on a work project carried out to promote exports from Portugal to Germany in the IT area, under consideration of the deliverables required by the clients CCILA and Anetie. The project outcome approaches the fact that the majority of the Portuguese market players has disadvantages in size and does rarely coordinate activities among each other, which hinders them to export successfully on a broad scale. To bring together Portuguese delivery potential and German market demand, expert interviews were conducted. Based on the findings, a concept was developed to overcome the domestic collaboration issues in order to strengthen the national exports in the identified sector - embedded systems implementation services for machinery and equipment companies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polysaccharides are gaining increasing attention as potential environmental friendly and sustainable building blocks in many fields of the (bio)chemical industry. The microbial production of polysaccharides is envisioned as a promising path, since higher biomass growth rates are possible and therefore higher productivities may be achieved compared to vegetable or animal polysaccharides sources. This Ph.D. thesis focuses on the modeling and optimization of a particular microbial polysaccharide, namely the production of extracellular polysaccharides (EPS) by the bacterial strain Enterobacter A47. Enterobacter A47 was found to be a metabolically versatile organism in terms of its adaptability to complex media, notably capable of achieving high growth rates in media containing glycerol byproduct from the biodiesel industry. However, the industrial implementation of this production process is still hampered due to a largely unoptimized process. Kinetic rates from the bioreactor operation are heavily dependent on operational parameters such as temperature, pH, stirring and aeration rate. The increase of culture broth viscosity is a common feature of this culture and has a major impact on the overall performance. This fact complicates the mathematical modeling of the process, limiting the possibility to understand, control and optimize productivity. In order to tackle this difficulty, data-driven mathematical methodologies such as Artificial Neural Networks can be employed to incorporate additional process data to complement the known mathematical description of the fermentation kinetics. In this Ph.D. thesis, we have adopted such an hybrid modeling framework that enabled the incorporation of temperature, pH and viscosity effects on the fermentation kinetics in order to improve the dynamical modeling and optimization of the process. A model-based optimization method was implemented that enabled to design bioreactor optimal control strategies in the sense of EPS productivity maximization. It is also critical to understand EPS synthesis at the level of the bacterial metabolism, since the production of EPS is a tightly regulated process. Methods of pathway analysis provide a means to unravel the fundamental pathways and their controls in bioprocesses. In the present Ph.D. thesis, a novel methodology called Principal Elementary Mode Analysis (PEMA) was developed and implemented that enabled to identify which cellular fluxes are activated under different conditions of temperature and pH. It is shown that differences in these two parameters affect the chemical composition of EPS, hence they are critical for the regulation of the product synthesis. In future studies, the knowledge provided by PEMA could foster the development of metabolically meaningful control strategies that target the EPS sugar content and oder product quality parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since the financial crisis, risk based portfolio allocations have gained a great deal in popularity. This increase in popularity is primarily due to the fact that they make no assumptions as to the expected return of the assets in the portfolio. These portfolios implicitly put risk management at the heart of asset allocation and thus their recent appeal. This paper will serve as a comparison of four well-known risk based portfolio allocation methods; minimum variance, maximum diversification, inverse volatility and equally weighted risk contribution. Empirical backtests will be performed throughout rising interest rate periods from 1953 to 2015. Additionally, I will compare these portfolios to more simple allocation methods, such as equally weighted and a 60/40 asset-allocation mix. This paper will help to answer the question if these portfolios can survive in a rising interest rate environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Earthworks involve the levelling or shaping of a target area through the moving or processing of the ground surface. Most construction projects require earthworks, which are heavily dependent on mechanical equipment (e.g., excavators, trucks and compactors). Often, earthworks are the most costly and time-consuming component of infrastructure constructions (e.g., road, railway and airports) and current pressure for higher productivity and safety highlights the need to optimize earthworks, which is a nontrivial task. Most previous attempts at tackling this problem focus on single-objective optimization of partial processes or aspects of earthworks, overlooking the advantages of a multi-objective and global optimization. This work describes a novel optimization system based on an evolutionary multi-objective approach, capable of globally optimizing several objectives simultaneously and dynamically. The proposed system views an earthwork construction as a production line, where the goal is to optimize resources under two crucial criteria (costs and duration) and focus the evolutionary search (non-dominated sorting genetic algorithm-II) on compaction allocation, using linear programming to distribute the remaining equipment (e.g., excavators). Several experiments were held using real-world data from a Portuguese construction site, showing that the proposed system is quite competitive when compared with current manual earthwork equipment allocation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Earthworks tasks aim at levelling the ground surface at a target construction area and precede any kind of structural construction (e.g., road and railway construction). It is comprised of sequential tasks, such as excavation, transportation, spreading and compaction, and it is strongly based on heavy mechanical equipment and repetitive processes. Under this context, it is essential to optimize the usage of all available resources under two key criteria: the costs and duration of earthwork projects. In this paper, we present an integrated system that uses two artificial intelligence based techniques: data mining and evolutionary multi-objective optimization. The former is used to build data-driven models capable of providing realistic estimates of resource productivity, while the latter is used to optimize resource allocation considering the two main earthwork objectives (duration and cost). Experiments held using real-world data, from a construction site, have shown that the proposed system is competitive when compared with current manual earthwork design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Earthworks tasks are often regarded in transportation projects as some of the most demanding processes. In fact, sequential tasks such as excavation, transportation, spreading and compaction are strongly based on heavy mechanical equipment and repetitive processes, thus becoming as economically demanding as they are time-consuming. Moreover, actual construction requirements originate higher demands for productivity and safety in earthwork constructions. Given the percentual weight of costs and duration of earthworks in infrastructure construction, the optimal usage of every resource in these tasks is paramount. Considering the characteristics of an earthwork construction, it can be looked at as a production line based on resources (mechanical equipment) and dependency relations between sequential tasks, hence being susceptible to optimization. Up to the present, the steady development of Information Technology areas, such as databases, artificial intelligence and operations research, has resulted in the emergence of several technologies with potential application bearing that purpose in mind. Among these, modern optimization methods (also known as metaheuristics), such as evolutionary computation, have the potential to find high quality optimal solutions with a reasonable use of computational resources. In this context, this work describes an optimization algorithm for earthworks equipment allocation based on a modern optimization approach, which takes advantage of the concept that an earthwork construction can be regarded as a production line.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Information security is concerned with the protection of information, which can be stored, processed or transmitted within critical information systems of the organizations, against loss of confidentiality, integrity or availability. Protection measures to prevent these problems result through the implementation of controls at several dimensions: technical, administrative or physical. A vital objective for military organizations is to ensure superiority in contexts of information warfare and competitive intelligence. Therefore, the problem of information security in military organizations has been a topic of intensive work at both national and transnational levels, and extensive conceptual and standardization work is being produced. A current effort is therefore to develop automated decision support systems to assist military decision makers, at different levels in the command chain, to provide suitable control measures that can effectively deal with potential attacks and, at the same time, prevent, detect and contain vulnerabilities targeted at their information systems. The concept and processes of the Case-Based Reasoning (CBR) methodology outstandingly resembles classical military processes and doctrine, in particular the analysis of “lessons learned” and definition of “modes of action”. Therefore, the present paper addresses the modeling and design of a CBR system with two key objectives: to support an effective response in context of information security for military organizations; to allow for scenario planning and analysis for training and auditing processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lecture Notes in Computer Science, 9273

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Construction sector is one of the major responsible for energy consumption and carbon emissions and renovation of existing buildings plays an important role in the actions to mitigate climate changes. Present work is based on the methodology developed in IEA Annex 56, allowing identifying cost optimal and cost effective renovation scenarios improving the energy performance. The analysed case study is a residential neighbourhood of the municipality of Gaia in Portugal. The analysis compares a reference renovation scenario (without improving the energy performance of the building) with a series of alternative renovation scenarios, including the one that is being implemented.