939 resultados para ontology alignment
Resumo:
The semantic web vision is one in which rich, ontology-based semantic markup will become widely available. The availability of semantic markup on the web opens the way to novel, sophisticated forms of question answering. AquaLog is a portable question-answering system which takes queries expressed in natural language and an ontology as input, and returns answers drawn from one or more knowledge bases (KBs). We say that AquaLog is portable because the configuration time required to customize the system for a particular ontology is negligible. AquaLog presents an elegant solution in which different strategies are combined together in a novel way. It makes use of the GATE NLP platform, string metric algorithms, WordNet and a novel ontology-based relation similarity service to make sense of user queries with respect to the target KB. Moreover it also includes a learning component, which ensures that the performance of the system improves over the time, in response to the particular community jargon used by end users.
Resumo:
The semantic web (SW) vision is one in which rich, ontology-based semantic markup will become widely available. The availability of semantic markup on the web opens the way to novel, sophisticated forms of question answering. AquaLog is a portable question-answering system which takes queries expressed in natural language (NL) and an ontology as input, and returns answers drawn from one or more knowledge bases (KB). AquaLog presents an elegant solution in which different strategies are combined together in a novel way. AquaLog novel ontology-based relation similarity service makes sense of user queries.
Resumo:
We show a new method for term extraction from a domain relevant corpus using natural language processing for the purposes of semi-automatic ontology learning. Literature shows that topical words occur in bursts. We find that the ranking of extracted terms is insensitive to the choice of population model, but calculating frequencies relative to the burst size rather than the document length in words yields significantly different results.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
The growing use of a variety of information systems in crisis management both by non-governmental organizations (NGOs) and emergency management agencies makes the challenges of information sharing and interoperability increasingly important. The use of semantic web technologies is a growing area and is a technology stack specifically suited to these challenges. This paper presents a review of ontologies, vocabularies and taxonomies that are useful in crisis management systems. We identify the different subject areas relevant to crisis management based on a review of the literature. The different ontologies and vocabularies available are analysed in terms of their coverage, design and usability. We also consider the use cases for which they were designed and the degree to which they follow a variety of standards. While providing comprehensive ontologies for the crisis domain is not feasible or desirable there is considerable scope to develop ontologies for the subject areas not currently covered and for the purposes of interoperability.
Resumo:
Ontology construction for any domain is a labour intensive and complex process. Any methodology that can reduce the cost and increase efficiency has the potential to make a major impact in the life sciences. This paper describes an experiment in ontology construction from text for the animal behaviour domain. Our objective was to see how much could be done in a simple and relatively rapid manner using a corpus of journal papers. We used a sequence of pre-existing text processing steps, and here describe the different choices made to clean the input, to derive a set of terms and to structure those terms in a number of hierarchies. We describe some of the challenges, especially that of focusing the ontology appropriately given a starting point of a heterogeneous corpus. Results - Using mainly automated techniques, we were able to construct an 18055 term ontology-like structure with 73% recall of animal behaviour terms, but a precision of only 26%. We were able to clean unwanted terms from the nascent ontology using lexico-syntactic patterns that tested the validity of term inclusion within the ontology. We used the same technique to test for subsumption relationships between the remaining terms to add structure to the initially broad and shallow structure we generated. All outputs are available at http://thirlmere.aston.ac.uk/~kiffer/animalbehaviour/ webcite. Conclusion - We present a systematic method for the initial steps of ontology or structured vocabulary construction for scientific domains that requires limited human effort and can make a contribution both to ontology learning and maintenance. The method is useful both for the exploration of a scientific domain and as a stepping stone towards formally rigourous ontologies. The filtering of recognised terms from a heterogeneous corpus to focus upon those that are the topic of the ontology is identified to be one of the main challenges for research in ontology learning.
Resumo:
Ontology construction for any domain is a labour intensive and complex process. Any methodology that can reduce the cost and increase efficiency has the potential to make a major impact in the life sciences. This paper describes an experiment in ontology construction from text for the Animal Behaviour domain. Our objective was to see how much could be done in a simple and rapid manner using a corpus of journal papers. We used a sequence of text processing steps, and describe the different choices made to clean the input, to derive a set of terms and to structure those terms in a hierarchy. We were able in a very short space of time to construct a 17000 term ontology with a high percentage of suitable terms. We describe some of the challenges, especially that of focusing the ontology appropriately given a starting point of a heterogeneous corpus.
Resumo:
Dynamic supply chain alignment: a new business model for peak performance in enterprise supply chains across all geographies John Gattorna and friends, Farnham, Gower Publishing, 2009, 440pp., £60, ISBN 978-0-566-08822-3.
Resumo:
In the field of mental health risk assessment, there is no standardisation between the data used in different systems. As a first step towards the possible interchange of data between assessment tools, an ontology has been constructed for a particular one, GRiST (Galatean Risk Screening Tool). We briefly introduce GRiST and its data structures, then describe the ontology and the benefits that have already been realised from the construction process. For example, the ontology has been used to check the consistency of the various trees used in the model. We then consider potential uses in integration of data from other sources. © 2009 IEEE.
Resumo:
This thesis contributes to social studies of finance and accounting (Vollmer, Mennicken, & Preda, 2009) and the practice theory literatures (Feldman & Orlikowski, 2011) by experimenting (Baxter & Chua, 2008) with concepts developed by Theodore Schatzki and demonstrating their relevance and usefulness in theorizing and explaining accounting and other organizational phenomena. Influenced by Schatzki, I have undertaken a sociological investigation of the practices, arrangements, and nexuses forming (part of) the social ‘site’ of private equity (PE). I have examined and explained the organization of practices within the PE industry. More specifically, I have sought to throw light on the practice organizations animating various PE practices. I have problematized a particular aspect of Schatzki’s practice organization framework: ‘general understanding’, which has so far been poorly understood and taken for granted in the accounting literature. I have tried to further explore the concept to clarify important definitional issues surrounding its empirical application. In investigating the forms of accounting and control practices in PE firms and how they link with other practices forming part of the ‘site’, I have sought to explain how the ‘situated functionality’ of accounting is ‘prefigured’ by its ‘dispersed’ nature. In doing so, this thesis addresses the recent calls for research on accounting and control practices within financial services firms. This thesis contributes to the social studies of finance and accounting literature also by opening the blackbox of investment [e]valuation practices prevalent in the PE industry. I theorize the due diligence of PE funds as a complex of linked calculative practices and bring to fore the important aspects of ‘practical intelligibility’ of the investment professionals undertaking investment evaluation. I also identify and differentiate the ‘causal’ and ‘prefigurational’ relations between investment evaluation practices and the material entities ‘constituting’ those practices. Moreover, I demonstrate the role of practice memory in those practices. Finally, the thesis also contributes to the practice theory literature by identifying and attempting to clarify and/or improve the poorly defined and/or underdeveloped concepts of Schatzki’s ‘site’ ontology framework.
Resumo:
Increasingly, people's digital identities are attached to, and expressed through, their mobile devices. At the same time digital sensors pervade smart environments in which people are immersed. This paper explores different perspectives in which users' modelling features can be expressed through the information obtained by their attached personal sensors. We introduce the PreSense Ontology, which is designed to assign meaning to sensors' observations in terms of user modelling features. We believe that the Sensing Presence ( PreSense ) Ontology is a first step toward the integration of user modelling and "smart environments". In order to motivate our work we present a scenario and demonstrate how the ontology could be applied in order to enable context-sensitive services. © 2012 Springer-Verlag.
Resumo:
Subunit vaccine discovery is an accepted clinical priority. The empirical approach is time- and labor-consuming and can often end in failure. Rational information-driven approaches can overcome these limitations in a fast and efficient manner. However, informatics solutions require reliable algorithms for antigen identification. All known algorithms use sequence similarity to identify antigens. However, antigenicity may be encoded subtly in a sequence and may not be directly identifiable by sequence alignment. We propose a new alignment-independent method for antigen recognition based on the principal chemical properties of protein amino acid sequences. The method is tested by cross-validation on a training set of bacterial antigens and external validation on a test set of known antigens. The prediction accuracy is 83% for the cross-validation and 80% for the external test set. Our approach is accurate and robust, and provides a potent tool for the in silico discovery of medically relevant subunit vaccines.