942 resultados para offline programming
Resumo:
To demonstrate the feasibility and potential usefulness of an offline fusion of matched optical coherence tomography (OCT) and intravascular ultrasound (IVUS)/virtual histology (IVUS-VH) images.
Resumo:
The United States¿ Federal and State laws differentiate between acceptable (or, legal) and unacceptable (illegal) behavior by prescribing restrictive punishment to citizens and/or groups that violate these established rules. These regulations are written to treat every person equally and to fairly serve justice; furthermore, the sanctions placed on offenders seek to reform illegal behavior through limitations on freedoms and rehabilitative programs. Despite the effort to treat all offenders fairly regardless of social identity categories (e.g., sex, race, ethnicity, socioeconomic status, age, ability, and gender and sexual orientation) and to humanely eliminate illegal behavior, the American penal system perpetuates de facto discrimination against a multitude of peoples. Furthermore, soaring recidivism rates caused by unsuccessful re-entry of incarcerated offenders puts economic stress on Federal and State budgets. For these reasons, offenders, policy-makers, and law-abiding citizens should all have a vested interest in reforming the prison system. This thesis focuses on the failure of the United States corrections system to adequately address the gender-specific needs of non-violent female offenders. Several factors contribute to the gender-specific discrimination that women experience in the criminal justice system: 1) Trends in female criminality that skew women¿s crime towards drug-related crimes, prostitution, and property offenses; 2) Mandatory minimum sentences for drug crimes that are disproportionate to the crime committed; 3) So-called ¿gender-neutral¿ educational, vocational, substance abuse, and mental health programming that intends to equally rehabilitate men and women, but in fact favors men; and 4) The isolating nature of prison structures that inhibits smooth re-entry into society. I argue that a shift in the placement and treatment of non-violent female offenders is necessary for effective rehabilitation and for reducing recidivism rates. The first component of this shift is the design and implementation of gender- responsive treatment (GRT) rather than gender-neutral approaches in rehabilitative programming. The second shift is the utilization of alternatives to incarceration, which provide both more humane treatment of offenders and smoother reintegration to society. Drawing on recent scholarship, information from prison advocacy organizations, and research with men in an alternative program, I provide a critical analysis of current policies and alternative programs, and suggest several proposals for future gender- responsive programs in prisons and in place of incarceration. I argue that the expansion of gender-responsive programming and alternatives to incarceration respond to the marginalization of female offenders, address concerns about the financial sustainability of the United States criminal justice system, and tackle high recidivism rates.
Resumo:
This paper proposes a sequential coupling of a Hidden Markov Model (HMM) recognizer for offline handwritten English sentences with a probabilistic bottom-up chart parser using Stochastic Context-Free Grammars (SCFG) extracted from a text corpus. Based on extensive experiments, we conclude that syntax analysis helps to improve recognition rates significantly.
DESIGN AND IMPLEMENT DYNAMIC PROGRAMMING BASED DISCRETE POWER LEVEL SMART HOME SCHEDULING USING FPGA
Resumo:
With the development and capabilities of the Smart Home system, people today are entering an era in which household appliances are no longer just controlled by people, but also operated by a Smart System. This results in a more efficient, convenient, comfortable, and environmentally friendly living environment. A critical part of the Smart Home system is Home Automation, which means that there is a Micro-Controller Unit (MCU) to control all the household appliances and schedule their operating times. This reduces electricity bills by shifting amounts of power consumption from the on-peak hour consumption to the off-peak hour consumption, in terms of different “hour price”. In this paper, we propose an algorithm for scheduling multi-user power consumption and implement it on an FPGA board, using it as the MCU. This algorithm for discrete power level tasks scheduling is based on dynamic programming, which could find a scheduling solution close to the optimal one. We chose FPGA as our system’s controller because FPGA has low complexity, parallel processing capability, a large amount of I/O interface for further development and is programmable on both software and hardware. In conclusion, it costs little time running on FPGA board and the solution obtained is good enough for the consumers.
Resumo:
Context-dependent behavior is becoming increasingly important for a wide range of application domains, from pervasive computing to common business applications. Unfortunately, mainstream programming languages do not provide mechanisms that enable software entities to adapt their behavior dynamically to the current execution context. This leads developers to adopt convoluted designs to achieve the necessary runtime flexibility. We propose a new programming technique called Context-oriented Programming (COP) which addresses this problem. COP treats context explicitly, and provides mechanisms to dynamically adapt behavior in reaction to changes in context, even after system deployment at runtime. In this paper we lay the foundations of COP, show how dynamic layer activation enables multi-dimensional dispatch, illustrate the application of COP by examples in several language extensions, and demonstrate that COP is largely independent of other commitments to programming style.
Resumo:
This paper treats the problem of setting the inventory level and optimizing the buffer allocation of closed-loop flow lines operating under the constant-work-in-process (CONWIP) protocol. We solve a very large but simple linear program that models an entire simulation run of a closed-loop flow line in discrete time to determine a production rate estimate of the system. This approach introduced in Helber, Schimmelpfeng, Stolletz, and Lagershausen (2011) for open flow lines with limited buffer capacities is extended to closed-loop CONWIP flow lines. Via this method, both the CONWIP level and the buffer allocation can be optimized simultaneously. The first part of a numerical study deals with the accuracy of the method. In the second part, we focus on the relationship between the CONWIP inventory level and the short-term profit. The accuracy of the method turns out to be best for such configurations that maximize production rate and/or short-term profit.