823 resultados para nutritional demand
Resumo:
Thesis (Ph.D.)--University of Washington, 2015
Resumo:
Objective: To describe (1) the relationship between nutrition and the preterm-at-term infant phenotype, (2) phenotypic differences between preterm-at-term infants and healthy term born infants and (3) relationships between somatic and brain MRI outcomes. Design: Prospective observational study. Setting: UK tertiary neonatal unit. Participants: Preterm infants (<32 weeks gestation) (n=22) and healthy term infants (n=39) Main outcome measures: Preterm nutrient intake; total and regional adipose tissue (AT) depot volumes; brain volume and proximal cerebral arterial vessel tortuosity (CAVT) in preterm infants and in term infants. Results: Preterm nutrition was deficient in protein and high in carbohydrate and fat. Preterm nutrition was not related to AT volumes, brain volume or proximal CAVT score; a positive association was noted between human milk intake and proximal CAVT score (r=0.44, p=0.05). In comparison to term infants, preterm infants had increased total adiposity, comparable brain volumes and reduced proximal CAVT scores. There was a significant negative correlation between deep subcutaneous abdominal AT volume and brain volume in preterm infants (r=−0.58, p=0.01). Conclusions: Though there are significant phenotypic differences between preterm infants at term and term infants, preterm macronutrient intake does not appear to be a determinant. Our preliminary data suggest that (1) human milk may exert a beneficial effect on cerebral arterial vessel tortuosity and (2) there is a negative correlation between adiposity and brain volume in preterm infants at term. Further work is warranted to see if our findings can be replicated and to understand the causal mechanisms.
Resumo:
Background: Parenteral nutrition is central to the care of very immature infants. Current international recommendations favor higher amino acid intakes and fish oil–containing lipid emulsions. Objective: The aim of this trial was to compare 1) the effects of high [immediate recommended daily intake (Imm-RDI)] and low [incremental introduction of amino acids (Inc-AAs)] parenteral amino acid delivery within 24 h of birth on body composition and 2) the effect of a multicomponent lipid emulsion containing 30% soybean oil, 30% medium-chain triglycerides, 25% olive oil, and 15% fish oil (SMOF) with that of soybean oil (SO)-based lipid emulsion on intrahepatocellular lipid (IHCL) content. Design: We conducted a 2-by-2 factorial, double-blind, multicenter randomized controlled trial. Results: We randomly assigned 168 infants born at ,31 wk of gestation. We evaluated outcomes at term in 133 infants. There were no significant differences between Imm-RDI and Inc-AA groups for nonadipose mass [adjusted mean difference: 1.0 g (95% CI: 2108, 111 g; P = 0.98)] or between SMOF and SO groups for IHCL [adjusted mean SMOF:SO ratio: 1.1 (95% CI: 0.8, 1.6; P = 0.58]. SMOF does not affect IHCL content. There was a significant interaction (P = 0.05) between the 2 interventions for nonadipose mass. There were no significant interactions between group differences for either primary outcome measure after adjusting for additional confounders. Imm-RDI infants were more likely than Inc-AA infants to have blood urea nitrogen concentrations .7 mmol/L or .10 mmol/L, respectively (75% compared with 49%, P , 0.01; 49% compared with 18%, P , 0.01). Head circumference at term was smaller in the Imm-RDI group [mean difference: 20.8 cm (95% CI: 21.5, 20.1 cm; P = 0.02)]. There were no significant differences in any prespecified secondary outcomes, including adiposity, liver function tests, incidence of conjugated hyperbilirubinemia, weight, length, mortality, and brain volumes. Conclusion: Imm-RDI of parenteral amino acids does not benefit body composition or growth to term and may be harmful. This trial was registered at www.isrctn.com as ISRCTN29665319 and at eudract.ema.europa.eu as EudraCT 2009-016731-34.
Resumo:
Power systems have been suffering huge changes mainly due to the substantial increase of distributed generation and to the operation in competitive environments. Virtual power players can aggregate a diversity of players, namely generators and consumers, and a diversity of energy resources, including electricity generation based on several technologies, storage and demand response. Resource management gains an increasing relevance in this competitive context, while demand side active role provides managers with increased demand elasticity. This makes demand response use more interesting and flexible, giving rise to a wide range of new opportunities.This paper proposes a methodology for managing demand response programs in the scope of virtual power players. The proposed method is based on the calculation of locational marginal prices (LMP). The evaluation of the impact of using demand response specific programs on the LMP value supports the manager decision concerning demand response use. The proposed method has been computationally implemented and its application is illustrated in this paper using a 32 bus network with intensive use of distributed generation.
Resumo:
The introduction of Electric Vehicles (EVs) together with the implementation of smart grids will raise new challenges to power system operators. This paper proposes a demand response program for electric vehicle users which provides the network operator with another useful resource that consists in reducing vehicles charging necessities. This demand response program enables vehicle users to get some profit by agreeing to reduce their travel necessities and minimum battery level requirements on a given period. To support network operator actions, the amount of demand response usage can be estimated using data mining techniques applied to a database containing a large set of operation scenarios. The paper includes a case study based on simulated operation scenarios that consider different operation conditions, e.g. available renewable generation, and considering a diversity of distributed resources and electric vehicles with vehicle-to-grid capacity and demand response capacity in a 33 bus distribution network.
Resumo:
In competitive electricity markets with deep concerns for the efficiency level, demand response programs gain considerable significance. As demand response levels have decreased after the introduction of competition in the power industry, new approaches are required to take full advantage of demand response opportunities. Grid operators and utilities are taking new initiatives, recognizing the value of demand response for grid reliability and for the enhancement of organized spot markets’ efficiency. This paper proposes a methodology for the selection of the consumers that participate in an event, which is the responsibility of the Portuguese transmission network operator. The proposed method is intended to be applied in the interruptibility service implemented in Portugal, in convergence with Spain, in the context of the Iberian electricity market. This method is based on the calculation of locational marginal prices (LMP) which are used to support the decision concerning the consumers to be schedule for participation. The proposed method has been computationally implemented and its application is illustrated in this paper using a 937 bus distribution network with more than 20,000 consumers.
Resumo:
The design and development of simulation models and tools for Demand Response (DR) programs are becoming more and more important for adequately taking the maximum advantages of DR programs use. Moreover, a more active consumers’ participation in DR programs can help improving the system reliability and decrease or defer the required investments. DemSi, a DR simulator, designed and implemented by the authors of this paper, allows studying DR actions and schemes in distribution networks. It undertakes the technical validation of the solution using realistic network simulation based on PSCAD. DemSi considers the players involved in DR actions, and the results can be analyzed from each specific player point of view.
Using demand response to deal with unexpected low wind power generation in the context of smart grid
Resumo:
Demand response is assumed an essential resource to fully achieve the smart grids operating benefits, namely in the context of competitive markets. Some advantages of Demand Response (DR) programs and of smart grids can only be achieved through the implementation of Real Time Pricing (RTP). The integration of the expected increasing amounts of distributed energy resources, as well as new players, requires new approaches for the changing operation of power systems. The methodology proposed aims the minimization of the operation costs in a smart grid operated by a virtual power player. It is especially useful when actual and day ahead wind forecast differ significantly. When facing lower wind power generation than expected, RTP is used in order to minimize the impacts of such wind availability change. The proposed model application is here illustrated using the scenario of a special wind availability reduction day in the Portuguese power system (8th February 2012).
Resumo:
In competitive electricity markets with deep concerns at the efficiency level, demand response programs gain considerable significance. In the same way, distributed generation has gained increasing importance in the operation and planning of power systems. Grid operators and utilities are taking new initiatives, recognizing the value of demand response and of distributed generation for grid reliability and for the enhancement of organized spot market´s efficiency. Grid operators and utilities become able to act in both energy and reserve components of electricity markets. This paper proposes a methodology for a joint dispatch of demand response and distributed generation to provide energy and reserve by a virtual power player that operates a distribution network. The proposed method has been computationally implemented and its application is illustrated in this paper using a 32 bus distribution network with 32 medium voltage consumers.
Resumo:
The concept of demand response has a growing importance in the context of the future power systems. Demand response can be seen as a resource like distributed generation, storage, electric vehicles, etc. All these resources require the existence of an infrastructure able to give players the means to operate and use them in an efficient way. This infrastructure implements in practice the smart grid concept, and should accommodate a large number of diverse types of players in the context of a competitive business environment. In this paper, demand response is optimally scheduled jointly with other resources such as distributed generation units and the energy provided by the electricity market, minimizing the operation costs from the point of view of a virtual power player, who manages these resources and supplies the aggregated consumers. The optimal schedule is obtained using two approaches based on particle swarm optimization (with and without mutation) which are compared with a deterministic approach that is used as a reference methodology. A case study with two scenarios implemented in DemSi, a demand Response simulator developed by the authors, evidences the advantages of the use of the proposed particle swarm approaches.
Resumo:
Recent changes in power systems mainly due to the substantial increase of distributed generation and to the operation in competitive environments has created new challenges to operation and planning. In this context, Virtual Power Players (VPP) can aggregate a diversity of players, namely generators and consumers, and a diversity of energy resources, including electricity generation based on several technologies, storage and demand response. Demand response market implementation has been done in recent years. Several implementation models have been considered. An important characteristic of a demand response program is the trigger criterion. A program for which the event trigger depends on the Locational Marginal Price (LMP) used by the New England Independent System operator (ISO-NE) inspired the present paper. This paper proposes a methodology to support VPP demand response programs management. The proposed method has been computationally implemented and its application is illustrated using a 32 bus network with intensive use of distributed generation. Results concerning the evaluation of the impact of using demand response events are also presented.
Resumo:
The growing importance and influence of new resources connected to the power systems has caused many changes in their operation. Environmental policies and several well know advantages have been made renewable based energy resources largely disseminated. These resources, including Distributed Generation (DG), are being connected to lower voltage levels where Demand Response (DR) must be considered too. These changes increase the complexity of the system operation due to both new operational constraints and amounts of data to be processed. Virtual Power Players (VPP) are entities able to manage these resources. Addressing these issues, this paper proposes a methodology to support VPP actions when these act as a Curtailment Service Provider (CSP) that provides DR capacity to a DR program declared by the Independent System Operator (ISO) or by the VPP itself. The amount of DR capacity that the CSP can assure is determined using data mining techniques applied to a database which is obtained for a large set of operation scenarios. The paper includes a case study based on 27,000 scenarios considering a diversity of distributed resources in a 33 bus distribution network.
Resumo:
In competitive electricity markets with deep concerns for the efficiency level, demand response programs gain considerable significance. As demand response levels have decreased after the introduction of competition in the power industry, new approaches are required to take full advantage of demand response opportunities. This paper presents DemSi, a demand response simulator that allows studying demand response actions and schemes in distribution networks. It undertakes the technical validation of the solution using realistic network simulation based on PSCAD. The use of DemSi by a retailer in a situation of energy shortage, is presented. Load reduction is obtained using a consumer based price elasticity approach supported by real time pricing. Non-linear programming is used to maximize the retailer’s profit, determining the optimal solution for each envisaged load reduction. The solution determines the price variations considering two different approaches, price variations determined for each individual consumer or for each consumer type, allowing to prove that the approach used does not significantly influence the retailer’s profit. The paper presents a case study in a 33 bus distribution network with 5 distinct consumer types. The obtained results and conclusions show the adequacy of the used methodology and its importance for supporting retailers’ decision making.
Resumo:
Power systems are planed and operated according to the optimization of the available resources. Traditionally these tasks were mostly undertaken in a centralized way which is no longer adequate in a competitive environment. Demand response can play a very relevant role in this context but adequate tools to negotiate this kind of resources are required. This paper presents an approach to deal with these issues, by using a multi-agent simulator able to model demand side players and simulate their strategic behavior. The paper includes an illustrative case study that considers an incident situation. The distribution company is able to reduce load curtailment due to load flexibility contracts previously established with demand side players.
Resumo:
The smart grid concept is rapidly evolving in the direction of practical implementations able to bring smart grid advantages into practice. Evolution in legacy equipment and infrastructures is not sufficient to accomplish the smart grid goals as it does not consider the needs of the players operating in a complex environment which is dynamic and competitive in nature. Artificial intelligence based applications can provide solutions to these problems, supporting decentralized intelligence and decision-making. A case study illustrates the importance of Virtual Power Players (VPP) and multi-player negotiation in the context of smart grids. This case study is based on real data and aims at optimizing energy resource management, considering generation, storage and demand response.