996 resultados para neural crest migration
Resumo:
La migració internacional contemporània és integrada en un procés d'interconnexió global definit per les revolucions del transport i de les tecnologies de la informació i la comunicació. Una de les conseqüències d'aquesta interconnexió global és que les persones migrants tenen més capacitat per a processar informació tant abans com després de marxar. Aquests canvis podrien tenir implicacions inesperades per a la migració contemporània pel que fa a la capacitat de les persones migrants per a prendre decisions més informades, la reducció de la incertesa en contextos migratoris, el desdibuixament del concepte de distància o la decisió d'emigrar cap a llocs més llunyans. Aquesta recerca és important, ja que la manca de coneixement sobre aquesta qüestió podria contribuir a fer augmentar la distància entre els objectius de les polítiques de migració i els seus resultats. El paper que tenen els agents de la informació en els contextos migratoris també podria canviar. En aquest escenari, perquè les polítiques de migració siguin més efectives, s'haurà de tenir en compte la major capacitat de la població migrant de processar la informació i les fonts d'informació en què es confia. Aquest article demostra que l'equació més informació equival a més ben informat no es compleix sempre. Fins i tot en l'era de la informació, les fonts no fiables, les expectatives falses, la sobreinformació i els rumors encara són presents en els contextos migratoris. Tanmateix, defensem l'argument que aquests efectes no volguts es podrien reduir complint quatre requisits de la informació fiable: que sigui exhaustiva, que sigui rellevant, que s'hi confiï i que sigui actualitzada.
Resumo:
The purpose of this paper is to propose a Neural-Q_learning approach designed for online learning of simple and reactive robot behaviors. In this approach, the Q_function is generalized by a multi-layer neural network allowing the use of continuous states and actions. The algorithm uses a database of the most recent learning samples to accelerate and guarantee the convergence. Each Neural-Q_learning function represents an independent, reactive and adaptive behavior which maps sensorial states to robot control actions. A group of these behaviors constitutes a reactive control scheme designed to fulfill simple missions. The paper centers on the description of the Neural-Q_learning based behaviors showing their performance with an underwater robot in a target following task. Real experiments demonstrate the convergence and stability of the learning system, pointing out its suitability for online robot learning. Advantages and limitations are discussed
Resumo:
Reinforcement learning (RL) is a very suitable technique for robot learning, as it can learn in unknown environments and in real-time computation. The main difficulties in adapting classic RL algorithms to robotic systems are the generalization problem and the correct observation of the Markovian state. This paper attempts to solve the generalization problem by proposing the semi-online neural-Q_learning algorithm (SONQL). The algorithm uses the classic Q_learning technique with two modifications. First, a neural network (NN) approximates the Q_function allowing the use of continuous states and actions. Second, a database of the most representative learning samples accelerates and stabilizes the convergence. The term semi-online is referred to the fact that the algorithm uses the current but also past learning samples. However, the algorithm is able to learn in real-time while the robot is interacting with the environment. The paper shows simulated results with the "mountain-car" benchmark and, also, real results with an underwater robot in a target following behavior
Resumo:
INTRODUCTION Functional imaging studies of addiction following protracted abstinence have not been systematically conducted to look at the associations between severity of use of different drugs and brain dysfunction. Findings from such studies may be relevant to implement specific interventions for treatment. The aim of this study was to examine the association between resting-state regional brain metabolism (measured with 18F-fluorodeoxyglucose Positron Emission Tomography (FDG-PET) and the severity of use of cocaine, heroin, alcohol, MDMA and cannabis in a sample of polysubstance users with prolonged abstinence from all drugs used. METHODS Our sample consisted of 49 polysubstance users enrolled in residential treatment. We conducted correlation analyses between estimates of use of cocaine, heroin, alcohol, MDMA and cannabis and brain metabolism (BM) (using Statistical Parametric Mapping voxel-based (VB) whole-brain analyses). In all correlation analyses conducted for each of the drugs we controlled for the co-abuse of the other drugs used. RESULTS The analysis showed significant negative correlations between severity of heroin, alcohol, MDMA and cannabis use and BM in the dorsolateral prefrontal cortex (DLPFC) and temporal cortex. Alcohol use was further associated with lower metabolism in frontal premotor cortex and putamen, and stimulants use with parietal cortex. CONCLUSIONS Duration of use of different drugs negatively correlated with overlapping regions in the DLPFC, whereas severity of cocaine, heroin and alcohol use selectively impact parietal, temporal, and frontal-premotor/basal ganglia regions respectively. The knowledge of these associations could be useful in the clinical practice since different brain alterations have been associated with different patterns of execution that may affect the rehabilitation of these patients.
Resumo:
The nervous system is a frequent target of industrial chemicals, pharmaceuticals, and environmental pollutants. To screen large numbers of compounds for their neurotoxic potential, in vitro systems are required which combine organ-specific traits with robustness and high reproducibility. These requirements are met by serum-free aggregating brain cell cultures derived from mechanically dissociated embryonic rat brain. The initial cell suspension, composed of neural stem cells, neural progenitor cells, immature postmitotic neurons, glioblasts, and microglial cells, is kept under continuous gyratory agitation. Spherical aggregates form spontaneously and are maintained in suspension culture for several weeks. Within the aggregates, the cells rearrange and mature, reproducing critical morphogenic events such as migration, proliferation, differentiation, synaptogenesis, and myelination. In addition to the spontaneous reconstitution of histotypic brain architecture, the cultures acquire organ-specific functionality as indicated by activity-dependent glucose consumption, spontaneous electrical activity, and brain-specific inflammatory responses. These three-dimensional primary cell cultures offer therefore a unique model for neurotoxicity testing both during development and at advanced cellular differentiation. The high number of aggregates available and the excellent reproducibility of the cultures facilitate routine test procedures. This chapter presents a detailed description of the preparation and maintenance of these cultures as well as their use for routine toxicity testing.
Resumo:
Introduction: Motor abilities in schoolchildren have been decreasing in the last two decades (Bös, 2003, Tomkinson et al., 2003). This may be related to the dramatic increase in overweight and adiposity during the same time period. Children of migrant background are especially affected (Lasserre et al., 2007). But little is known about the relationship between BMI and migration background and motor abilities in preschool children. Methods/Design We carried out a cross-sectional analysis with 665 children (age 5.1 ± 0.6 years; 49.8 % female) of 40 randomly selected kindergarten classes from German and French speaking regions in Switzerland with a high migrant background. We investigated BMI, cardiorespiratory fitness (20 m shuttle run), static (displacement of center of pressure (COP)) and dynamic (balancing forward on a beam) postural control and overall fitness (obstacle course). Results: Of the children, 9.6 % were overweight, 10.5 % were obese (Swiss national percentiles) and 72.8 % were of migrant background (at least one parent born outside of Switzerland). Mean BMI from children of non-migrant background was 15.5 ± 1.1 kg/m2, while migrant children had a mean BMI of 15.8 ± 1.7 kg/m2 (p=0.08). Normal-weight children performed better in cardiorespiratory fitness (3.1 ± 1.4 vs. 2.6 ± 1.1 stages, p<0.001), overall fitness (18.9 ± 4.4 vs. 20.8 ± 4.6 sec, p<0.001) and in dynamic balance (4.9 ± 3.5 vs. 3.8 ± 2.5 steps, p<0.001) compared to overweight and obese children, while the latter had less postural sway (COP: 956 ± 302 vs. 1021 ± 212 mm, p=0.008). There was a clear inverse dose-response relationship between weight status and dynamic motor abilities. There were no significant differences in most tested motor abilities between non-migrant and migrant. The latter performed less well in only one motor test (overall fitness: 20.2 ± 5.2 vs. 18.3 ± 3.5 sec, p<0.001). These findings persisted after adjustment for BMI. Conclusion In preschool children, differences in motor abilities are already present between normal weight and overweight/obese children. However, migrant children demonstrate similar motor abilities compared to non-migrant children for almost all tests, despite their slightly higher BMI.
Resumo:
Nerve biopsy examination is an important auxiliary procedure for diagnosing pure neural leprosy (PNL). When acid-fast bacilli (AFB) are not detected in the nerve sample, the value of other nonspecific histological alterations should be considered along with pertinent clinical, electroneuromyographical and laboratory data (the detection of Mycobacterium leprae DNA with polymerase chain reaction and the detection of serum anti-phenolic glycolipid 1 antibodies) to support a possible or probable PNL diagnosis. Three hundred forty nerve samples [144 from PNL patients and 196 from patients with non-leprosy peripheral neuropathies (NLN)] were examined. Both AFB-negative and AFB-positive PNL samples had more frequent histopathological alterations (epithelioid granulomas, mononuclear infiltrates, fibrosis, perineurial and subperineurial oedema and decreased numbers of myelinated fibres) than the NLN group. Multivariate analysis revealed that independently, mononuclear infiltrate and perineurial fibrosis were more common in the PNL group and were able to correctly classify AFB-negative PNL samples. These results indicate that even in the absence of AFB, these histopathological nerve alterations may justify a PNL diagnosis when observed in conjunction with pertinent clinical, epidemiological and laboratory data.
Resumo:
Auditory evoked potentials are informative of intact cortical functions of comatose patients. The integrity of auditory functions evaluated using mismatch negativity paradigms has been associated with their chances of survival. However, because auditory discrimination is assessed at various delays after coma onset, it is still unclear whether this impairment depends on the time of the recording. We hypothesized that impairment in auditory discrimination capabilities is indicative of coma progression, rather than of the comatose state itself and that rudimentary auditory discrimination remains intact during acute stages of coma. We studied 30 post-anoxic comatose patients resuscitated from cardiac arrest and five healthy, age-matched controls. Using a mismatch negativity paradigm, we performed two electroencephalography recordings with a standard 19-channel clinical montage: the first within 24 h after coma onset and under mild therapeutic hypothermia, and the second after 1 day and under normothermic conditions. We analysed electroencephalography responses based on a multivariate decoding algorithm that automatically quantifies neural discrimination at the single patient level. Results showed high average decoding accuracy in discriminating sounds both for control subjects and comatose patients. Importantly, accurate decoding was largely independent of patients' chance of survival. However, the progression of auditory discrimination between the first and second recordings was informative of a patient's chance of survival. A deterioration of auditory discrimination was observed in all non-survivors (equivalent to 100% positive predictive value for survivors). We show, for the first time, evidence of intact auditory processing even in comatose patients who do not survive and that progression of sound discrimination over time is informative of a patient's chance of survival. Tracking auditory discrimination in comatose patients could provide new insight to the chance of awakening in a quantitative and automatic fashion during early stages of coma.