944 resultados para neural computing
Resumo:
An increase in cognitive control has been systematically observed in responses produced immediately after the commission of an error. Such responses show a delay in reaction time (post-error slowing) and an increase in accuracy. To characterize the neurophysiological mechanism involved in the adaptation of cognitive control, we examined oscillatory electrical brain activity by electroencephalogram and its corresponding neural network by event-related functional magnetic resonance imaging in three experiments. We identified a new oscillatory thetabeta component related to the degree of post-error slowing in the correct responses following an erroneous trial. Additionally, we found that the activity of the right dorsolateral prefrontal cortex, the right inferior frontal cortex, and the right superior frontal cortex was correlated with the degree of caution shown in the trial following the commission of an error. Given the overlap between this brain network and the regions activated by the need to inhibit motor responses in a stop-signal manipulation, we conclude that the increase in cognitive control observed after the commission of an error is implemented through the participation of an inhibitory mechanism.
Resumo:
Given the structural and acoustical similarities between speech and music, and possible overlapping cerebral structures in speech and music processing, a possible relationship between musical aptitude and linguistic abilities, especially in terms of second language pronunciation skills, was investigated. Moreover, the laterality effect of the mother tongue was examined with both adults and children by means of dichotic listening scores. Finally, two event-related potential studies sought to reveal whether children with advanced second language pronunciation skills and higher general musical aptitude differed from children with less-advanced pronunciation skills and less musical aptitude in accuracy when preattentively processing mistuned triads and music / speech sound durations. The results showed a significant relationship between musical aptitude, English language pronunciation skills, chord discrimination ability, and sound-change-evoked brain activation in response to musical stimuli (durational differences and triad contrasts). Regular music practice may also have a modulatory effect on the brain’s linguistic organization and cause altered hemispheric functioning in those who have regularly practised music for years. Based on the present results, it is proposed that language skills, both in production and discrimination, are interconnected with perceptual musical skills.
Resumo:
Deflection compensation of flexible boom structures in robot positioning is usually done using tables containing the magnitude of the deflection with inverse kinematics solutions of a rigid structure. The number of table values increases greatly if the working area of the boom is large and the required positioning accuracy is high. The inverse kinematics problems are very nonlinear, and if the structure is redundant, in some cases it cannot be solved in a closed form. If the structural flexibility of the manipulator arms is taken into account, the problem is almost impossible to solve using analytical methods. Neural networks offer a possibility to approximate any linear or nonlinear function. This study presents four different methods of using neural networks in the static deflection compensation and inverse kinematics solution of a flexible hydraulically driven manipulator. The training information required for training neural networks is obtained by employing a simulation model that includes elasticity characteristics. The functionality of the presented methods is tested based on the simulated and measured results of positioning accuracy. The simulated positioning accuracy is tested in 25 separate coordinate points. For each point, the positioning is tested with five different mass loads. The mean positioning error of a manipulator decreased from 31.9 mm to 4.1 mm in the test points. This accuracy enables the use of flexible manipulators in the positioning of larger objects. The measured positioning accuracy is tested in 9 separate points using three different mass loads. The mean positioning error decreased from 10.6 mm to 4.7 mm and the maximum error from 27.5 mm to 11.0 mm.
Resumo:
This study evaluates the application of an intelligent hybrid system for time-series forecasting of atmospheric pollutant concentration levels. The proposed method consists of an artificial neural network combined with a particle swarm optimization algorithm. The method not only searches relevant time lags for the correct characterization of the time series, but also determines the best neural network architecture. An experimental analysis is performed using four real time series and the results are shown in terms of six performance measures. The experimental results demonstrate that the proposed methodology achieves a fair prediction of the presented pollutant time series by using compact networks.
Resumo:
The objective of this paper was to evaluate the potential of neural networks (NN) as an alternative method to the basic epidemiological approach to describe epidemics of coffee rust. The NN was developed from the intensities of coffee (Coffea arabica) rust along with the climatic variables collected in Lavras-MG between 13 February 1998 and 20 April 2001. The NN was built with climatic variables that were either selected in a stepwise regression analysis or by the Braincel® system, software for NN building. Fifty-nine networks and 26 regression models were tested. The best models were selected based on small values of the mean square deviation (MSD) and of the mean prediction error (MPE). For the regression models, the highest coefficients of determination (R²) were used. The best model developed with neural networks had an MSD of 4.36 and an MPE of 2.43%. This model used the variables of minimum temperature, production, relative humidity of the air, and irradiance 30 days before the evaluation of disease. The best regression model was developed from 29 selected climatic variables in the network. The summary statistics for this model were: MPE=6.58%, MSE=4.36, and R²=0.80. The elaborated neural networks from a time series also were evaluated to describe the epidemic. The incidence of coffee rust at four previous fortnights resulted in a model with MPE=4.72% and an MSD=3.95.
Resumo:
The main focus of the present thesis was at verbal episodic memory processes that are particularly vulnerable to preclinical and clinical Alzheimer’s disease (AD). Here these processes were studied by a word learning paradigm, cutting across the domains of memory and language learning studies. Moreover, the differentiation between normal aging, mild cognitive impairment (MCI) and AD was studied by the cognitive screening test CERAD. In study I, the aim was to examine how patients with amnestic MCI differ from healthy controls in the different CERAD subtests. Also, the sensitivity and specificity of the CERAD screening test to MCI and AD was examined, as previous studies on the sensitivity and specificity of the CERAD have not included MCI patients. The results indicated that MCI is characterized by an encoding deficit, as shown by the overall worse performance on the CERAD Wordlist learning test compared with controls. As a screening test, CERAD was not very sensitive to MCI. In study II, verbal learning and forgetting in amnestic MCI, AD and healthy elderly controls was investigated with an experimental word learning paradigm, where names of 40 unfamiliar objects (mainly archaic tools) were trained with or without semantic support. The object names were trained during a 4-day long period and a follow-up was conducted one week, 4 weeks and 8 weeks after the training period. Manipulation of semantic support was included in the paradigm because it was hypothesized that semantic support might have some beneficial effects in the present learning task especially for the MCI group, as semantic memory is quite well preserved in MCI in contrast to episodic memory. We found that word learning was significantly impaired in MCI and AD patients, whereas forgetting patterns were similar across groups. Semantic support showed a beneficial effect on object name retrieval in the MCI group 8 weeks after training, indicating that the MCI patients’ preserved semantic memory abilities compensated for their impaired episodic memory. The MCI group performed equally well as the controls in the tasks tapping incidental learning and recognition memory, whereas the AD group showed impairment. Both the MCI and the AD group benefited less from phonological cueing than the controls. Our findings indicate that acquisition is compromised in both MCI and AD, whereas long13 term retention is not affected to the same extent. Incidental learning and recognition memory seem to be well preserved in MCI. In studies III and IV, the neural correlates of naming newly learned objects were examined in healthy elderly subjects and in amnestic MCI patients by means of positron emission tomography (PET) right after the training period. The naming of newly learned objects by healthy elderly subjects recruited a left-lateralized network, including frontotemporal regions and the cerebellum, which was more extensive than the one related to the naming of familiar objects (study III). Semantic support showed no effects on the PET results for the healthy subjects. The observed activation increases may reflect lexicalsemantic and lexical-phonological retrieval, as well as more general associative memory mechanisms. In study IV, compared to the controls, the MCI patients showed increased anterior cingulate activation when naming newly learned objects that had been learned without semantic support. This suggests a recruitment of additional executive and attentional resources in the MCI group.
Resumo:
The human language-learning ability persists throughout life, indicating considerable flexibility at the cognitive and neural level. This ability spans from expanding the vocabulary in the mother tongue to acquisition of a new language with its lexicon and grammar. The present thesis consists of five studies that tap both of these aspects of adult language learning by using magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) during language processing and language learning tasks. The thesis shows that learning novel phonological word forms, either in the native tongue or when exposed to a foreign phonology, activates the brain in similar ways. The results also show that novel native words readily become integrated in the mental lexicon. Several studies in the thesis highlight the left temporal cortex as an important brain region in learning and accessing phonological forms. Incidental learning of foreign phonological word forms was reflected in functionally distinct temporal lobe areas that, respectively, reflected short-term memory processes and more stable learning that persisted to the next day. In a study where explicitly trained items were tracked for ten months, it was found that enhanced naming-related temporal and frontal activation one week after learning was predictive of good long-term memory. The results suggest that memory maintenance is an active process that depends on mechanisms of reconsolidation, and that these process vary considerably between individuals. The thesis put special emphasis on studying language learning in the context of language production. The neural foundation of language production has been studied considerably less than that of perceptive language, especially on the sentence level. A well-known paradigm in language production studies is picture naming, also used as a clinical tool in neuropsychology. This thesis shows that accessing the meaning and phonological form of a depicted object are subserved by different neural implementations. Moreover, a comparison between action and object naming from identical images indicated that the grammatical class of the retrieved word (verb, noun) is less important than the visual content of the image. In the present thesis, the picture naming was further modified into a novel paradigm in order to probe sentence-level speech production in a newly learned miniature language. Neural activity related to grammatical processing did not differ between the novel language and the mother tongue, but stronger neural activation for the novel language was observed during the planning of the upcoming output, likely related to more demanding lexical retrieval and short-term memory. In sum, the thesis aimed at examining language learning by combining different linguistic domains, such as phonology, semantics, and grammar, in a dynamic description of language processing in the human brain.
Resumo:
The Artificial Neural Networks (ANNs) are mathematical models method capable of estimating non-linear response plans. The advantage of these models is to present different responses of the statistical models. Thus, the objective of this study was to develop and to test ANNs for estimating rainfall erosivity index (EI30) as a function of the geographical location for the state of Rio de Janeiro, Brazil and generating a thematic visualization map. The characteristics of latitude, longitude e altitude using ANNs were acceptable to estimating EI30 and allowing visualization of the space variability of EI30. Thus, ANN is a potential option for the estimate of climatic variables in substitution to the traditional methods of interpolation.
Resumo:
The present study aimed at evaluating the use of Artificial Neural Network to correlate the values resulting from chemical analyses of samples of coffee with the values of their sensory analyses. The coffee samples used were from the Coffea arabica L., cultivars Acaiá do Cerrado, Topázio, Acaiá 474-19 and Bourbon, collected in the southern region of the state of Minas Gerais. The chemical analyses were carried out for reducing and non-reducing sugars. The quality of the beverage was evaluated by sensory analysis. The Artificial Neural Network method used values from chemical analyses as input variables and values from sensory analysis as output values. The multiple linear regression of sensory analysis values, according to the values from chemical analyses, presented a determination coefficient of 0.3106, while the Artificial Neural Network achieved a level of 80.00% of success in the classification of values from the sensory analysis.
Resumo:
Precision irrigation seeks to establish strategies which achieve an efficient ratio between the volume of water used (reduction in input) and the productivity obtained (increase in production). There are several studies in the literature on strategies for achieving this efficiency, such as those dealing with the method of volumetric water balance (VWB). However, it is also of great practical and economic interest to set up versatile implementations of irrigation strategies that: (i) maintain the performance obtained with other implementations, (ii) rely on few computational resources, (iii) adapt well to field conditions, and (iv) allow easy modification of the irrigation strategy. In this study, such characteristics are achieved when using an Artificial Neural Network (ANN) to determine the period of irrigation for a watermelon crop in the Irrigation Perimeter of the Lower Acaraú, in the state of Ceará, Brazil. The Volumetric Water Balance was taken as the standard for comparing the management carried out with the proposed implementation of ANN. The statistical analysis demonstrates the effectiveness of the proposed management, which is able to replace VWB as a strategy in automation.
Resumo:
Objetivos: avaliar os níveis de folatos maternos e fetais gestações com malformações por defeitos de fechamento do tubo neural (DFTN). Métodos: o estudo foi do tipo caso-controle, no qual 14 casos de fetos com DFTN (grupo estudo) e 14 casos de fetos com outras malformações (grupo controle) foram estudados em gestantes de baixo risco para DFTN. Propusemo-nos a dosar o ácido fólico, na sua forma total e metilada, nos compartimentos fetal e materno, utilizando dosagens séricas e tissulares (eritrocitárias), assim como o volume corpuscular médio, o hematócrito e a hemoglobina. As coletas foram realizadas imediatamente antes da interrupção da gestação. Os resultados nos dois grupos foram comparados pelo teste t de Student, método de amostras pareados pela idade gestacional. Resultados: não se encontrou diferença nas taxas de folatos fetais e nos parâmetros hematológicos dos fetos, entre os dois grupos. Por outro lado, taxas anormalmente baixas de folatos foram encontradas nos eritrócitos das mães portadoras de fetos com DFTN, tanto para as formas totais(293,9 ng/mL contra 399,1 ng/mL no grupo controle, p=0,01) quanto para as formas metiladas (201,9 ng/mL contra 314,0 ng/mL para o grupo controle, p=0,02). Os folatos séricos maternos não se mostraram diferentes nos grupos estudo e controle. Conclusão: este estudo demonstrou que há uma menor taxa de folatos intratissulares, nas mães de fetos acometidos por DFTN, porém com taxas de folatos séricos semelhantes em relação ao grupo controle.
Resumo:
Objetivo: verificar os níveis de folatos, vitamina B12 e ferritina em pacientes cujos fetos apresentaram defeitos de tubo neural (DTN). O folato sangüíneo e a vitamina B12 atuam como cofatores para as enzimas envolvidas na biossíntese do DNA. A interrupção deste processo pode impedir o fechamento do tubo neural. A suplementação vitamínica contendo folato pode reduzir as taxas de ocorrência de defeitos de tubo neural, embora exista a preocupação de que esta prevenção possa mascarar a deficiência de vitamina B12. Métodos: dosagens de vitamina B12 e ferritina pelo método de enzimaimunoensaio com micropartículas e a dosagens de ácido fólico pelo método de captura iônica (IMx ABBOTT). Resultados: a porcentagem de gestantes com deficiência de vitamina B12 (níveis séricos < 150 pg/ml) foi de 11,8%. Não houve nenhum caso de deficiência de folato (níveis séricos < 3,0 ng/ml). A prevalência de gestantes com deficiência nos estoques de ferro foi de 47,1% (níveis séricos < 12 ng/ml). Conclusões: com os resultados encontrados neste estudo (prevalência de 11,8% de deficientes em vitamina B12 e 0% de deficiência de folato), sugerimos que a suplementação se realize após a determinação da vitamina B12 sérica.
Resumo:
Valmistustekniikoiden kehittyessä IC-piireille saadaan mahtumaan yhä enemmän transistoreja. Monimutkaisemmat piirit mahdollistavat suurempien laskutoimitusmäärien suorittamisen aikayksikössä. Piirien aktiivisuuden lisääntyessä myös niiden energiankulutus lisääntyy, ja tämä puolestaan lisää piirin lämmöntuotantoa. Liiallinen lämpö rajoittaa piirien toimintaa. Tämän takia tarvitaan tekniikoita, joilla piirien energiankulutusta saadaan pienennettyä. Uudeksi tutkimuskohteeksi ovat tulleet pienet laitteet, jotka seuraavat esimerkiksi ihmiskehon toimintaa, rakennuksia tai siltoja. Tällaisten laitteiden on oltava energiankulutukseltaan pieniä, jotta ne voivat toimia pitkiä aikoja ilman akkujen lataamista. Near-Threshold Computing on tekniikka, jolla pyritään pienentämään integroitujen piirien energiankulutusta. Periaatteena on käyttää piireillä pienempää käyttöjännitettä kuin piirivalmistaja on niille alunperin suunnitellut. Tämä hidastaa ja haittaa piirin toimintaa. Jos kuitenkin laitteen toiminnassa pystyään hyväksymään huonompi laskentateho ja pienentynyt toimintavarmuus, voidaan saavuttaa säästöä energiankulutuksessa. Tässä diplomityössä tarkastellaan Near-Threshold Computing -tekniikkaa eri näkökulmista: aluksi perustuen kirjallisuudesta löytyviin aikaisempiin tutkimuksiin, ja myöhemmin tutkimalla Near-Threshold Computing -tekniikan soveltamista kahden tapaustutkimuksen kautta. Tapaustutkimuksissa tarkastellaan FO4-invertteriä sekä 6T SRAM -solua piirisimulaatioiden avulla. Näiden komponenttien käyttäytymisen Near-Threshold Computing –jännitteillä voidaan tulkita antavan kattavan kuvan suuresta osasta tavanomaisen IC-piirin pinta-alaa ja energiankulusta. Tapaustutkimuksissa käytetään 130 nm teknologiaa, ja niissä mallinnetaan todellisia piirivalmistusprosessin tuotteita ajamalla useita Monte Carlo -simulaatioita. Tämä valmistuskustannuksiltaan huokea teknologia yhdistettynä Near-Threshold Computing -tekniikkaan mahdollistaa matalan energiankulutuksen piirien valmistaminen järkevään hintaan. Tämän diplomityön tulokset näyttävät, että Near-Threshold Computing pienentää piirien energiankulutusta merkittävästi. Toisaalta, piirien nopeus heikkenee, ja yleisesti käytetty 6T SRAM -muistisolu muuttuu epäluotettavaksi. Pidemmät polut logiikkapiireissä sekä transistorien kasvattaminen muistisoluissa osoitetaan tehokkaiksi vastatoimiksi Near- Threshold Computing -tekniikan huonoja puolia vastaan. Tulokset antavat perusteita matalan energiankulutuksen IC-piirien suunnittelussa sille, kannattaako käyttää normaalia käyttöjännitettä, vai laskea sitä, jolloin piirin hidastuminen ja epävarmempi käyttäytyminen pitää ottaa huomioon.