908 resultados para nervous system development


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Factors that regulate cellular migration during embryonic development are essential for tissue and organ morphogenesis. Scatter factor/hepatocyte growth factor (SF/HGF) can stimulate motogenic and morphogenetic activities in cultured epithelial cells expressing the Met tyrosine kinase receptor and is essential for development; however, the precise physiological role of SF/HGF is incompletely understood. Here we provide functional evidence that inappropriate expression of SF/HGF in transgenic mice influences the development of two distinct migratory cell lineages, resulting in ectopic skeletal muscle formation and melanosis in the central nervous system, and patterned hyperpigmentation of the skin. Committed TRP-2 positive melanoblasts were found to be situated aberrantly within defined regions of the transgenic embryo, including the neural tube, which overproduced SF/RGF. Our data strongly suggest that SF/HGF possesses physiologically relevant scatter activity, and functions as a true morphogenetic factor by regulating migration and/or differentiation of select populations of premyogenic and neural crest cells during normal mammalian embryogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current theories of sexual differentiation maintain that ovarian estrogen prevents masculine development of the copulatory system in birds, whereas estrogen derived from testicular androgens promotes masculine sexual differentiation of neuroanatomy and sexual behavior in mammals. Paradoxically, some data suggest that the neural song system in zebra finches follows the mammalian pattern with estrogenic metabolites of testicular secretions causing masculine development. To test whether the removal of estrogen from males during early development would prevent the development of masculine song systems, zebra finches were treated embryonically with an inhibitor of estrogen synthesis. In addition, this treatment in genetic female zebra finches induced both functional ovarian and testicular tissue to develop, thus allowing the assessment of the direct effects of testicular secretions on song system development. In males, the inhibition of estrogen synthesis before hatching had a small but significant effect in demasculinizing one aspect of the neural song system. In treated females, the song systems remained morphologically feminine. These results suggest that masculinization of the song system is not determined solely by testicular androgens or their estrogenic metabolites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The three members of the Brn-3 family of POU domain transcription factors are found in highly restricted sets of central nervous system neurons. Within the retina, these factors are present only within subsets of ganglion cells. We show here that in the developing mouse retina, Brn-3b protein is first observed in presumptive ganglion cell precursors as they begin to migrate from the zone of dividing neuroblasts to the future ganglion cell layer, and that targeted disruption of the Brn-3b gene leads in the homozygous state to a selective loss of 70% of retinal ganglion cells. In Brn-3b (-/-) mice other neurons within the retina and brain are minimally or not at all affected. These experiments indicate that Brn-3b plays an essential role in the development of specific ganglion cell types.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A systematic analysis of parthenogenetic (PG) cell fate within the central nervous system (CNS) was made throughout fetal development and neonatal and adult life. Chimeras were made between PG embryos carrying a ubiquitously expressed lacZ transgene and normal fertilized embryos. After detailed histological analysis, we find that the developmental potential of PG cells is spatially restricted to certain parts of the brain. PG cells are prevalent in telencephalic structures and are largely excluded from diencephalic structures, especially the hypothalamus. These spatial restrictions are established early in development. Behavioral studies with chimeras identified an increase in male aggression when the proportion of PG cells in the brain was high. These studies demonstrate that imprinted genes play key roles in development of the CNS and may be involved in behavior.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Findings from the fields of attachment theory, physiology, neurology, neurobiology and cognitive theory, when considered together, enhance understanding of the behavior and development of maltreated children. Each field describes from its own vantage how emotional trauma influences the quality and quantity of exploratory behavior. Development in many spheres is influemced by behavior. There is evidence from the field of neurobiology that experience ultimately influences the anatomy of the brain. Therefore, it can be hypothesized that constricted, overly defensive behavior in childhood ultimately compromises the development of the central nervous system itself. The altered neurobiology may help explain some of the developmental delays and failures seen in some maltreated children. Such developmental disruptions may include lowered intellectual performance, impaired ability to learn from experience, behavioral regressions under stress, and characterological abnormalities. This neurobiologic hypothesis has implications for research, intervention and training of professionals.It encourages 1) the identification of those deficit capacities most vulnerable to becoming neurologically based, 2) identification of ways to help the maltreated child explore and be accessible to developmental experiences, 3) more emphasis on the development of cognitive capacities, and 4) more breadth of training for professionals who work with maltreated children and their families.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Robotics is an emerging field with great activity. Robotics is a field that presents several problems because it depends on a large number of disciplines, technologies, devices and tasks. Its expansion from perfectly controlled industrial environments toward open and dynamic environment presents a many new challenges. New uses are, for example, household robots or professional robots. To facilitate the low cost, rapid development of robotic systems, reusability of code, its medium and long term maintainability and robustness are required novel approaches to provide generic models and software systems who develop paradigms capable of solving these problems. For this purpose, in this paper we propose a model based on multi-agent systems inspired by the human nervous system able to transfer the control characteristics of the biological system and able to take advantage of the best properties of distributed software systems. Specifically, we model the decentralized activity and hormonal variation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ubiquitin–proteasome system (UPS) is the main intracellular pathway for modulated protein turnover, playing an important role in the maintenance of cellular homeostasis. It also exerts a protein quality control through degradation of oxidized, mutant, denatured, or misfolded proteins and is involved in many biological processes where protein level regulation is necessary. This system allows the cell to modulate its protein expression pattern in response to changing physiological conditions and provides a critical protective role in health and disease. Impairments of UPS function in the central nervous system (CNS) underlie an increasing number of genetic and idiopathic diseases, many of which affect the retina. Current knowledge on the UPS composition and function in this tissue, however, is scarce and dispersed. This review focuses on UPS elements reported in the retina, including ubiquitinating and deubiquitinating enzymes (DUBs), and alternative proteasome assemblies. Known and inferred roles of protein ubiquitination, and of the related, SUMO conjugation (SUMOylation) process, in normal retinal development and adult homeostasis are addressed, including modulation of the visual cycle and response to retinal stress and injury. Additionally, the relationship between UPS dysfunction and human neurodegenerative disorders affecting the retina, including Alzheimer's, Parkinson's, and Huntington's diseases, are dealt with, together with numerous instances of retina-specific illnesses with UPS involvement, such as retinitis pigmentosa, macular degenerations, glaucoma, diabetic retinopathy (DR), and aging-related impairments. This information, though still basic and limited, constitutes a suitable framework to be expanded in incoming years and should prove orientative toward future therapy design targeting sight-affecting diseases with a UPS underlying basis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese de mestrado integrado em Engenharia Biomédica e Biofísica, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2016

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evidence for the presence of the vitamin D receptor in brain implies this vitamin may have some function in this organ. This study investigates whether vitamin D-3 acts during brain development. We demonstrate that rats born to vitamin D-3-deficient mothers had profound alterations in the brain at birth. The cortex was longer but not wider, the lateral ventricles were enlarged, the cortex was proportionally thinner and there was more cell proliferation throughout the brain. There were reductions in brain content of nerve growth factor and glial cell line-derived neurotrophic factor and reduced expression of p75(NTR), the low-affinity neurotrophin receptor. Our findings would suggest that low maternal vitamin D3 has important ramifications for the developing brain. (C) 2003 IBRO. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adenosylhomocysteine hydrolase-like protein 1 (AHCYL1) is a novel intracellular protein with similar to 50% protein identity to adenosyl homocysteine hydrolase (AHCY), an important enzyme for metabolizing S-adenosyl-L-homocysteine, the by-product of S-adenosyl-L-homomethionine-dependent methylation. AHCYL1 binds to the inositol 1,4,5-trisphosphate receptor, suggesting that AHCYL1 is involved in intracellular calcium release. We identified two zebrafish AHCYL1 orthologs(zAHCYL1A and -B) by bioinformatics and reverse transcription-PCR. Unlike the ubiquitously present AHCY genes, AHCYL1 genes were only detected in segmented animals, and AHCYL1 proteins were highly conserved among species. Phylogenic analysis suggested that the AHCYL1 gene diverged early from AHCY and evolved independently. Quantitative reverse transcription-PCR showed that zAHCYL1A and -B mRNA expression was regulated differently from the other AHCY-like protein zAHCYL2 and zAHCY during zebrafish embryogenesis. Injection of morpholino antisense oligonucleotides against zAHCYL1A and -B into zebrafish embryos inhibited zAHCYL1A and -B mRNA translation specifically and induced ventralized morphologies. Conversely, human and zebrafish AHCYL1A mRNA injection into zebrafish embryos induced dorsalized morphologies that were similar to those obtained by depleting intracellular calcium with thapsigargin. Human AHCY mRNA injection showed little effect on the embryos. These data suggest that AHCYL1 has a different function from AHCY and plays an important role in embryogenesis by modulating inositol 1,4,5-trisphosphate receptor function for the intracellular calcium release.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cortical midline glia are critical to the formation of the corpus callosum during development. The glial wedge is a Population of midline glia that is located at the corticoseptal boundary and expresses repulsive/growth-inhibitory molecules that guide callosal axons as they cross the midline. The glial wedge are the first cells within the cortex to express GFAP and thus may express molecules specific for glial maturation. The corticoseptal boundary is a genetically defined boundary between the cingulate cortex (dorsal telencephalon) and the septum (ventral telencephalon). The correct dorso-ventral position of this boundary is vital to the formation of both the glial wedge and the corpus callosum. Our aim was to identify genes expressed specifically within the glial wedge that might be involved in either glial differentiation, formation of the corticoseptal boundary or development of the corpus callosum. To identify such genes we have performed a differential display PCR screen comparing RNA isolated from the glial wedge with RNA isolated from control tissues such as the neocortex and septum, of embryonic day 17 mouse brains. Using 200 different combinations of primers, we identified and cloned 67 distinct gene fragments. In situ hybridization analysis confirmed the differential expression of many of the genes, and showed that clones G24F3, G39F8 and transcription factor LZIP have specific expression patterns in the telencephalon of embryonic and postnatal brains. An RNase Protection Assay (RPA) revealed that the expression of G39F8, G24173 and LZIP increase markedly in the telencephalon at E16 and continue to be expressed until at least PO, during the period when the corpus callosum is forming. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Slit genes encode secreted ligands that regulate axon branching, commissural axon pathfinding and neuronal migration. The principal identified receptor for Slit is Robo ( Roundabout in Drosophila). To investigate Slit signalling in forebrain development, we generated Robo1 knockout mice by targeted deletion of exon 5 of the Robo1 gene. Homozygote knockout mice died at birth, but prenatally displayed major defects in axon pathfinding and cortical interneuron migration. Axon pathfinding defects included dysgenesis of the corpus callosum and hippocampal commissure, and abnormalities in corticothalamic and thalamocortical targeting. Slit2 and Slit1/2 double mutants display malformations in callosal development, and in corticothalamic and thalamocortical targeting, as well as optic tract defects. In these animals, corticothalamic axons form large fasciculated bundles that aberrantly cross the midline at the level of the hippocampal and anterior commissures, and more caudally at the medial preoptic area. Such phenotypes of corticothalamic targeting were not observed in Robo1 knockout mice but, instead, both corticothalamic and thalamocortical axons aberrantly arrived at their respective targets at least 1 day earlier than controls. By contrast, in Slit mutants, fewer thalamic axons actually arrive in the cortex during development. Finally, significantly more interneurons ( up to twice as many at E12.5 and E15.5) migrated into the cortex of Robo1 knockout mice, particularly in both rostral and parietal regions, but not caudal cortex. These results indicate that Robo1 mutants have distinct phenotypes, some of which are different from those described in Slit mutants, suggesting that additional ligands, receptors or receptor partners are likely to be involved in Slit/Robo signalling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heat stroke is a life-threatening condition that can be fatal if not appropriately managed. Although heat stroke has been recognised as a medical condition for centuries, a universally accepted definition of heat stroke is lacking and the pathology of heat stroke is not fully understood. Information derived from autopsy reports and the clinical presentation of patients with heat stroke indicates that hyperthermia, septicaemia, central nervous system impairment and cardiovascular failure play important roles in the pathology of heat stroke. The current models of heat stroke advocate that heat stroke is triggered by hyperthermia but is driven by endotoxaemia. Endotoxaemia triggers the systemic inflammatory response, which can lead to systemic coagulation and haemorrhage, necrosis, cell death and multi-organ failure. However, the current heat stroke models cannot fully explain the discrepancies in high core temperature (Tc) as a trigger of heat stroke within and between individuals. Research on the concept of critical Tc: as a limitation to endurance exercise implies that a high Tc may function as a signal to trigger the protective mechanisms against heat stroke. Athletes undergoing a period of intense training are subjected to a variety of immune and gastrointestinal (GI) disturbances. The immune disturbances include the suppression of immune cells and their functions, suppression of cell-mediated immunity, translocation of lipopolysaccharide (LPS), suppression of anti-LPS antibodies, increased macrophage activity due to muscle tissue damage, and increased concentration of circulating inflammatory and pyrogenic cytokines. Common symptoms of exercise-induced GI disturbances include diarrhoea, vomiting, gastrointestinal bleeding, and cramps, which may increase gut-related LPS translocation. This article discusses the current evidence that supports the argument that these exercise-induced immune and GI disturbances may contribute to the development of endotoxaemia and heat stroke. When endotoxaemia can be tolerated or prevented, continuing exercise and heat exposure will elevate Tc to a higher level (> 42 degrees C), where heat stroke may occur through the direct thermal effects of heat on organ tissues and cells. We also discuss the evidence suggesting that heat stroke may occur through endotoxaemia (heat sepsis), the primary pathway of heat stroke, or hyperthermia, the secondary pathway of heat stroke. The existence of these two pathways of heat stroke and the contribution of exercise-induced immune and GI disturbances in the primary pathway of heat stroke are illustrated in the dual pathway model of heat stroke. This model of heat stroke suggests that prolonged intense exercise suppresses anti-LPS mechanisms, and promotes inflammatory and pyrogenic activities in the pathway of heat stroke.