938 resultados para near optical axis
Resumo:
Plasmas generated in de discharges in aromatic compounds have been used for several years in polymerization processes. The chemical kinetics developed in such a plasma environment are extremely complicated. Therefore it is extremely important to set up optical and electrical diagnostics in order to establish the kinetics of the film growth, In this work we studied de plasmas generated ill low-pressure atmospheres of benzene for different values of gas pressure and power coupled to the discharge. The pressure range varied from 0.2 to 1.0 mbar for electric power running from 4 to 25 W, the main chemical species observed within the discharge were CH, H and C. It was observed that the CH relative concentration increases continuously with the power in the range investigated. The electron temperature varied from 0.5 to 2.0 eV with the increase of the power, for a fixed value of gas pressure. The relative dielectric constant of the plasma polymerized benzene was kept around 4.8 from 100 Hz to 10 kHz, presenting a resonance near 25 kHz. This electric behaviour of the film was the same fur different conditions of polymeric film deposition, (C) 1997 Elsevier B.V. S.A.
Resumo:
Modern industry has frequently employed ethylene glycol ethers as monomers in plasma polymerization process to produce different types of coatings. In this work we used a stainless steel plasma reactor to grow thin polymeric films from low pressure RF excited plasma of diethylene glycol dimethyl ether. Plasmas were generated at 5W RF power in the range of 16 Pa to 60 Pa. The molecular structure of plasma polymerized films and their optical properties were analyzed by Fourier Transform Infrared Spectroscopy (FTIR) and UltravioletVisible Spectroscopy, respectively. The IR spectra show C-H stretching at 3000-2900 cm(-1), C=O stretching at 1730-1650 cm(-1), C-H bending at 1440-1380 cm(-1), C-O and C-O-C stretching at 1200-1000 cm(-1). The refraction index was around 1.5 and the optical gap calculated from absorption coefficient presented value near 3.8 eV. Water contact angle of the films ranged from 40 degrees to 35 degrees with corresponding surface energy from 66 to 73x10(-7) J. Because of its favorable optical and hydrophilic characteristics these films can be used in ophthalmic industries as glass lenses coatings.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The thermal behavior of Cu-Al alloys with 17, 19 and 21 at.%Al was examined by differential thermal analysis (DTA), differential scanning calorimetry (DSC), X-ray diffractometry (XRD), optical microscopy (OM) and scanning electron microscopy (SEM). The presence of the gamma phase (Al4Cu9) was clearly detected for the Cu-19 at.%Al alloy and caused the alpha (2) phase disordering process in two stages. The tendency to increase the alpha (2) dissolution precipitates with the increase in the Al content seems to be reverted for compositions at about 21 at.%Al and the heating/cooling ratio seems to influence the thermal response of this process. The presence of the endothermic peak corresponding to the beta (1)--> beta transformation depends on an incomplete beta decomposition reaction. The variation of the heating rate showed that the beta (1)-->(alpha+gamma (1)) decomposition is the dominant reaction for alloys containing 19 and 21 at.%Al.
Resumo:
Crystalline lead-pyrophosphate precursor was prepared in aqueous solution from lead nitrate and phosphoric acid and characterized by X-ray diffraction, thermogravimetry and Raman scattering. This crystalline lead-phosphate was then used to prepare glass samples in the binary system Pb(2)P(2)O(7)-WO(3). Dependence of WO(3) content on thermal, structural and optical properties were investigated by thermal analysis (DSC), Raman spectroscopy, UV-visible and near-infrared absorption and M-Line technique to access refractive index values. Incorporation of WO(3) in the lead-pyrophosphate matrix enhances the glass transition temperature and thermal stability against devitrification, favors formation of P-O-W bonds and WO(6) clusters. In addition, optical properties are strongly modified with a redshift of the optical bandgap with WO(3) incorporation as well as an increase of the refractive index from 1.89 to 2.05 in the visible. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Tungstate fluorophosphate glasses of good optical quality were synthesized by fusion of the components and casting under air atmosphere. The absorption spectra from near-infrared to visible were obtained and the Judd-Ofelt parameters determined from the absorption bands. Transition probabilities, excited state lifetimes and transition branching ratios, were, determined from the measurements. Pumping with a 354.7 nm beam from a pulsed laser. resulted in emission at 450 nm. due to transition D-1(2)-->F-3(4) in Tm3+ ions and a broadband emission centered at approximate to 550 nm attributed to the glass matrix. When pumping at 650 nm, two emission bands at 450 nm (D-1(2)-->F-3(4)) and at 790 nm (H-3(4)-->H-3(6)) were observed. Excitation spectra were also obtained in order to understand the origin of both emissions. Theoretical and experimental lifetimes were determined and,the results were explained in terms of multiphonon relaxation. (C) 2003 American Institute of Physics.
Resumo:
Natural alexandrite (BeAl2O4:Cr3+) crystals are investigated as regards the effects of annealing on their optical properties. Optical absorption spectra are measured from the ultraviolet (190 nm) to the near infrared (900 nm), for a sample subjected to consecutive annealing processes, where time and temperature are varied. Besides this, luminescence spectra are simultaneously obtained for this sample, excited with a Kr+ laser source, tuned on an ultraviolet multi-line mode (337.5, 350.7 and 356.4 nm). We observe from absorption as well as from emission data that annealing mainly influences the distribution of Cr3+ and Fe3+ ions, located on sites of a mirror plane (C-s symmetry), which are responsible for the optical properties of alexandrite. The results obtained lead to the conclusion that annealing induces a modification of the population of Cr3+ on C-s sites as well as on sites located on an inversion plane (C-i). Annealing could improve the optical properties of this material, as regards its application as a tunable laser.
Resumo:
The influence of the substrate temperature on the structural features and opto-electrical properties of undoped and indium-doped ZnO thin films deposited by pyrosol process was investigated. The addition of indium induces a drastic decrease (by a factor approximate to 10(10) for samples deposited at 300 degreesC) in the electrical resistivity of films, the lowest electrical resistivity (6 mOmega-cm) being observed for the film deposited at 450 degreesC. Films are highly transparent (>80%) in the Vis-NIR ranges, and the optical band gap exhibits a blue shift (from 3.29 to 3.33 eV) for the In-doped films deposited at increasing temperature. Preferential orientation of the ZnO crystallites with the c-axis perpendicular to the substrate surface and an anisotropic morphology of the nanoporous structure was observed for films growth at 300 and 350 degreesC. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Efficient energy upconversion of cw radiation at 1.064 mum into blue, red, and near infrared emission in Tm3+-doped Yb3+-sensitized 60TeO(2)-10GeO(2)-10K(2)O-10Li(2)O-10Nb(2)O(5) glasses is reported. Intense blue upconversion luminescence at 485 nm corresponding to the Tm3+ (1)G(4)--> H-3(6) transition with a measured absolute power of 0.1 muW for 800 mW excitation power at room temperature is observed. The experimental results also revealed a sevenfold enhancement in the upconversion efficiency when the sample was heated from room temperature to 235 degreesC yielding 0.7 muW of blue absolute fluorescence power for 800 mW pump power. High brightness emission around 800 nm (F-3(4)--> H-3(6)) in addition to a less intense 655 nm ((1)G(4)--> H-3(4) and F-3(2,3)--> H-3(6)) fluorescence is also recorded. The energy upconversion excitation mechanism for thulium emitting levels is assigned to multiphonon-assisted anti-Stokes excitation of the ytterbium-sensitizer followed by multiphonon-assisted sequential energy-transfer processes. (C) 2001 American Institute of Physics.
Resumo:
Aluminum doped zinc oxide polycrystalline thin films (AZO) were prepared by sol-gel dip-coating process. The sol was prepared from an ethanolic solution of zinc acetate using lithium hydroxide or succinic acid as hydrolytic catalyst. The quantity of aluminum in the sol was varied from 1 to 10 mol%. The structural characteristics studied by X-ray diffractometry were complemented by resistivity measurements and UV-Vis-NIR spectroscopy. The films are transparent from the near ultraviolet to the near infrared, presenting an absorption cut-off at almost 290 nm, irrespective of the nature of the catalyst and doping level. The best conductors were obtained for the AZO films containing 3 mol% of aluminum, prepared under acidic and basic catalysis and sintered at 450 degreesC. Their optical band-gap of 4.4 eV calculated from the absorption cut-off is larger than the values for band-gap widening predicted by the standard model for polar semiconductors. These polycrystalline films are textured with preferential orientation of grains along the wurtzite c-axis or the (100) direction. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
nonlinear (NL) refractive index, n(2), of NaPO3-WO3-Bi2O3 glass with different relative amounts of the constituents was measured at 1064 and 800 nm using the Z-scan and the thermally managed eclipse Z-scan techniques, respectively. The values of n(2) >= 10(-15) cm(2)/W and negligible NL absorption coefficient were determined. The large values of the NL refractive index and the very small NL absorption indicate that these materials have large potential for all-optical switching applications. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3212972]