861 resultados para motion platform
Neuroethologic differences in sleep deprivation induced by the single- and multiple-platform methods
Resumo:
It has been proposed that the multiple-platform method (MP) for desynchronized sleep (DS) deprivation eliminates the stress induced by social isolation and by the restriction of locomotion in the single-platform (SP) method. MP, however, induces a higher increase in plasma corticosterone and ACTH levels than SP. Since deprivation is of heuristic value to identify the functional role of this state of sleep, the objective of the present study was to determine the behavioral differences exhibited by rats during sleep deprivation induced by these two methods. All behavioral patterns exhibited by a group of 7 albino male Wistar rats submitted to 4 days of sleep deprivation by the MP method (15 platforms, spaced 150 mm apart) and by 7 other rats submitted to sleep deprivation by the SP method were recorded in order to elaborate an ethogram. The behavioral patterns were quantitated in 10 replications by naive observers using other groups of 7 rats each submitted to the same deprivation schedule. Each quantification session lasted 35 min and the behavioral patterns presented by each rat over a period of 5 min were counted. The results obtained were: a) rats submitted to the MP method changed platforms at a mean rate of 2.62 ± 1.17 platforms h-1 animal-1; b) the number of episodes of noninteractive waking patterns for the MP animals was significantly higher than that for SP animals (1077 vs 768); c) additional episodes of waking patterns (26.9 ± 18.9 episodes/session) were promoted by social interaction in MP animals; d) the cumulative number of sleep episodes observed in the MP test (311) was significantly lower (chi-square test, 1 d.f., P<0.05) than that observed in the SP test (534); e) rats submitted to the MP test did not show the well-known increase in ambulatory activity observed after the end of the SP test; f) comparison of 6 MP and 6 SP rats showed a significantly shorter latency to the onset of DS in MP rats (7.8 ± 4.3 and 29.0 ± 25.0 min, respectively; Student t-test, P<0.05). We conclude that the social interaction occurring in the MP test generates additional stress since it increases the time of forced wakefulness and reduces the time of rest promoted by synchronized sleep.
Resumo:
Smart phones became part and parcel of our life, where mobility provides a freedom of not being bounded by time and space. In addition, number of smartphones produced each year is skyrocketing. However, this also created discrepancies or fragmentation among devices and OSes, which in turn made an exceeding hard for developers to deliver hundreds of similar featured applications with various versions for the market consumption. This thesis is an attempt to investigate whether cloud based mobile development platforms can mitigate and eventually eliminate fragmentation challenges. During this research, we have selected and analyzed the most popular cloud based development platforms and tested integrated cloud features. This research showed that cloud based mobile development platforms may able to reduce mobile fragmentation and enable to utilize single codebase to deliver a mobile application for different platforms.
Resumo:
The objective of the present study was to evaluate incentive spirometers using volume- (Coach and Voldyne) and flow-oriented (Triflo II and Respirex) devices. Sixteen healthy subjects, 24 ± 4 years, 62 ± 12 kg, were studied. Respiratory variables were obtained by respiratory inductive plethysmography, with subjects in a semi-reclined position (45º). Tidal volume, respiratory frequency, minute ventilation, inspiratory duty cycle, mean inspiratory flow, and thoracoabdominal motion were measured. Statistical analysis was performed with Kolmogorov-Smirnov test, t-test and ANOVA. Comparison between the Coach and Voldyne devices showed that larger values of tidal volume (1035 ± 268 vs 947 ± 268 ml, P = 0.02) and minute ventilation (9.07 ± 3.61 vs 7.49 ± 2.58 l/min, P = 0.01) were reached with Voldyne, whereas no significant differences in respiratory frequency were observed (7.85 ± 1.24 vs 8.57 ± 1.89 bpm). Comparison between flow-oriented devices showed larger values of inspiratory duty cycle and lower mean inspiratory flow with Triflo II (0.35 ± 0.05 vs 0.32 ± 0.05 ml/s, P = 0.00, and 531 ± 137 vs 606 ± 167 ml/s, P = 0.00, respectively). Abdominal motion was larger (P < 0.05) during the use of volume-oriented devices compared to flow-oriented devices (52 ± 11% for Coach and 50 ± 9% for Voldyne; 43 ± 13% for Triflo II and 44 ± 14% for Respirex). We observed that significantly higher tidal volume associated with low respiratory frequency was reached with Voldyne, and that there was a larger abdominal displacement with volume-oriented devices.
Resumo:
The present study describes an auxiliary tool in the diagnosis of left ventricular (LV) segmental wall motion (WM) abnormalities based on color-coded echocardiographic WM images. An artificial neural network (ANN) was developed and validated for grading LV segmental WM using data from color kinesis (CK) images, a technique developed to display the timing and magnitude of global and regional WM in real time. We evaluated 21 normal subjects and 20 patients with LVWM abnormalities revealed by two-dimensional echocardiography. CK images were obtained in two sets of viewing planes. A method was developed to analyze CK images, providing quantitation of fractional area change in each of the 16 LV segments. Two experienced observers analyzed LVWM from two-dimensional images and scored them as: 1) normal, 2) mild hypokinesia, 3) moderate hypokinesia, 4) severe hypokinesia, 5) akinesia, and 6) dyskinesia. Based on expert analysis of 10 normal subjects and 10 patients, we trained a multilayer perceptron ANN using a back-propagation algorithm to provide automated grading of LVWM, and this ANN was then tested in the remaining subjects. Excellent concordance between expert and ANN analysis was shown by ROC curve analysis, with measured area under the curve of 0.975. An excellent correlation was also obtained for global LV segmental WM index by expert and ANN analysis (R² = 0.99). In conclusion, ANN showed high accuracy for automated semi-quantitative grading of WM based on CK images. This technique can be an important aid, improving diagnostic accuracy and reducing inter-observer variability in scoring segmental LVWM.
Resumo:
Recent data from our laboratory have shown that patients with the indeterminate form of Chagas' disease can have impairment of left ventricular contractility, as evaluated by the slope of the left ventricle end-systolic pressure-dimension relationship. We also showed that Chagas' disease patients with minimal baseline wall motion abnormalities detected by two-dimensional echocardiography have more intense contractility impairment when compared to patients with the indeterminate form of the disease without this abnormality. The prognostic implications of these findings have not been established. We evaluated 59 patients (37-76 years, mean = 55 years) with different clinical forms of Chagas' disease, who had normal left ventricular global systolic function at baseline (57.6 ± 6.9%) and who had at least one additional echo during clinical follow-up (0.4-17.6; mean 4.6 years). Group 1 consisted of 14 patients with minor baseline left ventricle wall motion abnormalities and group 2 consisted of 45 patients without these abnormalities. During follow-up, global left ventricle systolic function deterioration was observed in 10 group 1 patients (71.4%) and in only 10 group 2 patients (22.2%; P < 0.005). Age and duration of follow-up were not independent determinants of left ventricular function deterioration in these patients. The present data indicate that mild segmental left ventricular wall motion abnormalities are associated with worsening of systolic function in Chagas' disease patients who have normal baseline global systolic performance.
Resumo:
This thesis reports investigations on applying the Service Oriented Architecture (SOA) approach in the engineering of multi-platform and multi-devices user interfaces. This study has three goals: (1) analyze the present frameworks for developing multi-platform and multi-devices applications, (2) extend the principles of SOA for implementing a multi-platform and multi-devices architectural framework (SOA-MDUI), (3) applying and validating the proposed framework in the context of a specific application. One of the problems addressed in this ongoing research is the large amount of combinations for possible implementations of applications on different types of devices. Usually it is necessary to take into account the operating system (OS), user interface (UI) including the appearance, programming language (PL) and architectural style (AS). Our proposed approach extended the principles of SOA using patterns-oriented design and model-driven engineering approaches. Synthesizing the present work done in these domains, this research built and tested an engineering framework linking Model-driven Architecture (MDA) and SOA approaches to developing of UI. This study advances general understanding of engineering, deploying and managing multi-platform and multi-devices user interfaces as a service.
Resumo:
The objective of the present study was to evaluate breathing pattern, thoracoabdominal motion and muscular activity during three breathing exercises: diaphragmatic breathing (DB), flow-oriented (Triflo II) incentive spirometry and volume-oriented (Voldyne) incentive spirometry. Seventeen healthy subjects (12 females, 5 males) aged 23 ± 5 years (mean ± SD) were studied. Calibrated respiratory inductive plethysmography was used to measure the following variables during rest (baseline) and breathing exercises: tidal volume (Vt), respiratory frequency (f), rib cage contribution to Vt (RC/Vt), inspiratory duty cycle (Ti/Ttot), and phase angle (PhAng). Sternocleidomastoid muscle activity was assessed by surface electromyography. Statistical analysis was performed by ANOVA and Tukey or Friedman and Wilcoxon tests, with the level of significance set at P < 0.05. Comparisons between baseline and breathing exercise periods showed a significant increase of Vt and PhAng during all exercises, a significant decrease of f during DB and Voldyne, a significant increase of Ti/Ttot during Voldyne, and no significant difference in RC/Vt. Comparisons among exercises revealed higher f and sternocleidomastoid activity during Triflo II (P < 0.05) with respect to DB and Voldyne, without a significant difference in Vt, Ti/Ttot, PhAng, or RC/Vt. Exercises changed the breathing pattern and increased PhAng, a variable of thoracoabdominal asynchrony, compared to baseline. The only difference between DB and Voldyne was a significant increase of Ti/Ttot compared to baseline. Triflo II was associated with higher f values and electromyographic activity of the sternocleidomastoid. In conclusion, DB and Voldyne showed similar results while Triflo II showed disadvantages compared to the other breathing exercises.
Resumo:
Subjects with chronic obstructive pulmonary disease (COPD) present breathing pattern and thoracoabdominal motion abnormalities that may contribute to exercise limitation. Twenty-two men with stable COPD (FEV1 = 42.6 ± 13.5% predicted; age 68 ± 8 years; mean ± SD) on usual medication and with at least 5 years of diagnosis were evaluated at rest and during an incremental cycle exercise test (10 watts/2 min). Changes in respiratory frequency, tidal volume, rib cage and abdominal motion contribution to tidal volume and the phase angle that measures the asynchrony were analyzed by inductive respiratory plethysmography at rest and during three levels of exercise (30-50, 70-80, and 100% maximal work load). Repeated measures ANOVA followed by pre-planned contrasts and Bonferroni corrections were used for analyses. As expected, the greater the exercise intensity the higher the tidal volume and respiratory frequency. Abdominal motion contributed to the tidal volume increase (rest: 49.82 ± 11.19% vs exercise: 64.15 ± 9.7%, 63.41 ± 10%, and 65.56 ± 10.2%, respectively, P < 0.001) as well as the asynchrony [phase angle: 11.95 ± 7.24° at rest vs 22.2 ± 15° (P = 0.002), 22.6 ± 9° (P < 0.001), and 22.7 ± 8° (P < 0.001), respectively, at the three levels of exercise]. In conclusion, the increase in ventilation during exercise in COPD patients was associated with the major motion of the abdominal compartment and with an increase in the asynchrony independent of exercise intensity. It suggests that cycling exercise is an effective way of enhancing ventilation in COPD patients.
Resumo:
The aim of the present study was to determine the effect of volume and composition of fluid replacement on the physical performance of male football referees. Ten referees were evaluated during three official matches. In one match the participants were asked to consume mineral water ad libitum, and in the others they consumed a pre-determined volume of mineral water or a carbohydrate electrolyte solution (6.4% carbohydrate and 22 mM Na+) equivalent to 1% of their baseline body mass (half before the match and half during the interval). Total water loss, sweat rate and match physiological performance were measured. When rehydrated ad libitum (pre-match and at half time) participants lost 1.97 ± 0.18% of their pre-match body mass (2.14 ± 0.19 L). This parameter was significantly reduced when they consumed a pre-determined volume of fluid. Sweat rate was significantly reduced when the referees ingested a pre-determined volume of a carbohydrate electrolyte solution, 0.72 ± 0.12 vs 1.16 ± 0.11 L/h ad libitum. The high percentage (74.1%) of movements at low speed (walking, jogging) observed when they ingested fluid ad libitum was significantly reduced to 71% with mineral water and to 69.9% with carbohydrate solution. An increase in percent movement expended in backward running was observed when they consumed a pre-determined volume of carbohydrate solution, 7.7 ± 0.5 vs 5.5 ± 0.5% ad libitum. The improved hydration status achieved with the carbohydrate electrolyte solution reduced the length of time spent in activities at low-speed movements and increased the time spent in activities demanding high-energy expenditure.
Resumo:
The aim of this study was to analyze the alterations of arm and leg movements of patients during stroke gait. Joint angles of upper and lower limbs and spatiotemporal variables were evaluated in two groups: hemiparetic group (HG, 14 hemiparetic men, 53 ± 10 years) and control group (CG, 7 able-bodied men, 50 ± 4 years). The statistical analysis was based on the following comparisons (P ≤ 0.05): 1) right versus left sides of CG; 2) affected (AF) versus unaffected (UF) sides of HG; 3) CG versus both the affected and unaffected sides of HG, and 4) an intracycle comparison of the kinematic continuous angular variables between HG and CG. This study showed that the affected upper limb motion in stroke gait was characterized by a decreased range of motion of the glenohumeral (HG: 6.3 ± 4.5, CG: 20.1 ± 8.2) and elbow joints (AF: 8.4 ± 4.4, UF: 15.6 ± 7.6) on the sagittal plane and elbow joint flexion throughout the cycle (AF: 68.2 ± 0.4, CG: 46.8 ± 2.7). The glenohumeral joint presented a higher abduction angle (AF: 14.2 ± 1.6, CG: 11.5 ± 4.0) and a lower external rotation throughout the cycle (AF: 4.6 ± 1.2, CG: 22.0 ± 3.0). The lower limbs showed typical alterations of the stroke gait patterns. Thus, the changes in upper and lower limb motion of stroke gait were identified. The description of upper limb motion in stroke gait is new and complements gait analysis.
Resumo:
The overall objective of the thesis is to design a robot chassis frame which is a bearing structure of a vehicle supporting all mechanical components and providing structure and stability. Various techniques and scientific principles were used to design a chassis frame.Design principles were applied throughout the process. By using Solid-Works software,virtual models was made for chassis frame. Chassis frame of overall dimension 1597* 800*950 mm3 was designed. Center of mass lieson 1/3 of the length from front wheel at height 338mm in the symmetry plane. Overall weight of the chassis frame is 80.12kg. Manufacturing drawing is also provided. Additionally,structural analysis was done in FEMAP which gives the busting result for chassis design by taking into consideration stress and deflection on different kind of loading resembling real life case. On the basis of simulated result, selected material was verified. Resulting design is expected to perform its intended function without failure. As a suggestion for further research, additional fatigue analysis and proper dynamic analysis can be conducted to make the study more robust.
Resumo:
[Acte. 1789-07-28]