942 resultados para monitoring control system
Resumo:
This document is the Argo quality control manual for Dissolved oxygen concentration. It describes two levels of quality control: • The first level is the real-time system that performs a set of agreed automatic checks. • Adjustment in real-time can also be performed and the real-time system can evaluate quality flags for adjusted fields • The second level is the delayed-mode quality control system.
Resumo:
Tese (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Mecânica, 2016.
Resumo:
It is remarkable that there are no deployed military hybrid vehicles since battlefield fuel is approximately 100 times the cost of civilian fuel. In the commercial marketplace, where fuel prices are much lower, electric hybrid vehicles have become increasingly common due to their increased fuel efficiency and the associated operating cost benefit. An absence of military hybrid vehicles is not due to a lack of investment in research and development, but rather because applying hybrid vehicle architectures to a military application has unique challenges. These challenges include inconsistent duty cycles for propulsion requirements and the absence of methods to look at vehicle energy in a holistic sense. This dissertation provides a remedy to these challenges by presenting a method to quantify the benefits of a military hybrid vehicle by regarding that vehicle as a microgrid. This innovative concept allowed for the creation of an expandable multiple input numerical optimization method that was implemented for both real-time control and system design optimization. An example of each of these implementations was presented. Optimization in the loop using this new method was compared to a traditional closed loop control system and proved to be more fuel efficient. System design optimization using this method successfully illustrated battery size optimization by iterating through various electric duty cycles. By utilizing this new multiple input numerical optimization method, a holistic view of duty cycle synthesis, vehicle energy use, and vehicle design optimization can be achieved.
Resumo:
This thesis presents a load sharing method applied in a distributed micro grid system. The goal of this method is to balance the state-of-charge (SoC) of each parallel connected battery and make it possible to detect the average SoC of the system by measuring bus voltage for all connected modules. In this method the reference voltage for each battery converter is adjusted by adding a proportional SoC factor. Under such setting the battery with a higher SoC will output more power, whereas the one with lower SoC gives out less. Therefore the higher SoC battery will use its energy faster than the lower ones, and eventually the SoC and output power of each battery will converge. And because the reference voltage is related to SoC status, the information of the average SoC in this system could be shared for all modules by measuring bus voltage. The SoC balancing speed is related to the SoC droop factors. This SoC-based load sharing control system is analyzed in feasibility and stability. Simulations in MATLAB/Simulink are presented, which indicate that this control scheme could balance the battery SoCs as predicted. The observation of SoC sharing through bus voltage was validated in both software simulation and hardware experiments. It could be of use to non-communicated distributed power system in load shedding and power planning.
Resumo:
In this paper, a real-time optimal control technique for non-linear plants is proposed. The control system makes use of the cell-mapping (CM) techniques, widely used for the global analysis of highly non-linear systems. The CM framework is employed for designing approximate optimal controllers via a control variable discretization. Furthermore, CM-based designs can be improved by the use of supervised feedforward artificial neural networks (ANNs), which have proved to be universal and efficient tools for function approximation, providing also very fast responses. The quantitative nature of the approximate CM solutions fits very well with ANNs characteristics. Here, we propose several control architectures which combine, in a different manner, supervised neural networks and CM control algorithms. On the one hand, different CM control laws computed for various target objectives can be employed for training a neural network, explicitly including the target information in the input vectors. This way, tracking problems, in addition to regulation ones, can be addressed in a fast and unified manner, obtaining smooth, averaged and global feedback control laws. On the other hand, adjoining CM and ANNs are also combined into a hybrid architecture to address problems where accuracy and real-time response are critical. Finally, some optimal control problems are solved with the proposed CM, neural and hybrid techniques, illustrating their good performance.
Resumo:
En 1991 Colombia presenció la promulgación de una nueva Carta Política que trajo consigo renovadoras esperanzas y generó expectativas muy altas. La presente investigación examina y analiza las transformaciones y limitaciones de los sistemas de control sobre la Hacienda Pública, propuestos por esta nueva Constitución. En este sentido, se caracteriza y se cuestiona el funcionamiento del nuevo sistema de control fiscal, del sistema de control político y finalmente del sistema de control económico y financiero. Los resultados de este trabajo son reflexiones a propósito de las fallas que han dilucidado estos sistemas desde su implementación, y fueron posibles gracias a la revisión sistemática de informes institucionales, documentos académicos y trabajo de campo con los funcionarios de las entidades a cargo del control.
Resumo:
This paper focuses on computational models development and its applications on demand response, within smart grid scope. A prosumer model is presented and the corresponding economic dispatch problem solution is analyzed. The prosumer solar radiation production and energy consumption are forecasted by artificial neural networks. The existing demand response models are studied and a computational tool based on fuzzy clustering algorithm is developed and the results discussed. Consumer energy management applications within the InovGrid pilot project are presented. Computation systems are developed for the acquisition, monitoring, control and supervision of consumption data provided by smart meters, allowing the incorporation of consumer actions on their electrical energy management. An energy management system with integration of smart meters for energy consumers in a smart grid is developed.
Resumo:
The thesis work deals with topics that led to the development of innovative control-oriented models and control algorithms for modern gasoline engines. Knock in boosted spark ignition engines is the widest topic discussed in this document because it remains one of the most limiting factors for maximizing combustion efficiency in this kind of engine. First chapter is thus focused on knock and a wide literature review is proposed to summarize the preliminary knowledge that even represents the background and the reference for discussed activities. Most relevant results achieved during PhD course in the field of knock modelling and control are then presented, describing every control-oriented model that led to the development of an adaptive model-based combustion control system. The complete controller has been developed in the context of the collaboration with Ferrari GT and it allowed to completely redefine the knock intensity evaluation as well as the combustion phase control. The second chapter is focused on the activity related to a prototyping Port Water Injection system that has been developed and tested on a turbocharged spark ignition engine, within the collaboration with Magneti Marelli. Such system and the effects of injected water on the combustion process were then modeled in a 1-D simulation environment (GT Power). Third chapter shows the development and validation of a control-oriented model for the real-time calculation of exhaust gas temperature that represents another important limitation to the performance increase in modern boosted engines. Indeed, modelling of exhaust gas temperature and thermocouple behavior are themes that play a key role in the optimization of combustion and catalyst efficiency.
Resumo:
The topic of this thesis is the design and the implementation of mathematical models and control system algorithms for rotary-wing unmanned aerial vehicles to be used in cooperative scenarios. The use of rotorcrafts has many attractive advantages, since these vehicles have the capability to take-off and land vertically, to hover and to move backward and laterally. Rotary-wing aircraft missions require precise control characteristics due to their unstable and heavy coupling aspects. As a matter of fact, flight test is the most accurate way to evaluate flying qualities and to test control systems. However, it may be very expensive and/or not feasible in case of early stage design and prototyping. A good compromise is made by a preliminary assessment performed by means of simulations and a reduced flight testing campaign. Consequently, having an analytical framework represents an important stage for simulations and control algorithm design. In this work mathematical models for various helicopter configurations are implemented. Different flight control techniques for helicopters are presented with theoretical background and tested via simulations and experimental flight tests on a small-scale unmanned helicopter. The same platform is used also in a cooperative scenario with a rover. Control strategies, algorithms and their implementation to perform missions are presented for two main scenarios. One of the main contributions of this thesis is to propose a suitable control system made by a classical PID baseline controller augmented with L1 adaptive contribution. In addition a complete analytical framework and the study of the dynamics and the stability of a synch-rotor are provided. At last, the implementation of cooperative control strategies for two main scenarios that include a small-scale unmanned helicopter and a rover.
Resumo:
This work deals with the development of calibration procedures and control systems to improve the performance and efficiency of modern spark ignition turbocharged engines. The algorithms developed are used to optimize and manage the spark advance and the air-to-fuel ratio to control the knock and the exhaust gas temperature at the turbine inlet. The described work falls within the activity that the research group started in the previous years with the industrial partner Ferrari S.p.a. . The first chapter deals with the development of a control-oriented engine simulator based on a neural network approach, with which the main combustion indexes can be simulated. The second chapter deals with the development of a procedure to calibrate offline the spark advance and the air-to-fuel ratio to run the engine under knock-limited conditions and with the maximum admissible exhaust gas temperature at the turbine inlet. This procedure is then converted into a model-based control system and validated with a Software in the Loop approach using the engine simulator developed in the first chapter. Finally, it is implemented in a rapid control prototyping hardware to manage the combustion in steady-state and transient operating conditions at the test bench. The third chapter deals with the study of an innovative and cheap sensor for the in-cylinder pressure measurement, which is a piezoelectric washer that can be installed between the spark plug and the engine head. The signal generated by this kind of sensor is studied, developing a specific algorithm to adjust the value of the knock index in real-time. Finally, with the engine simulator developed in the first chapter, it is demonstrated that the innovative sensor can be coupled with the control system described in the second chapter and that the performance obtained could be the same reachable with the standard in-cylinder pressure sensors.
Resumo:
In pursuit of aligning with the European Union's ambitious target of achieving a carbon-neutral economy by 2050, researchers, vehicle manufacturers, and original equipment manufacturers have been at the forefront of exploring cutting-edge technologies for internal combustion engines. The introduction of these technologies has significantly increased the effort required to calibrate the models implemented in the engine control units. Consequently the development of tools that reduce costs and the time required during the experimental phases, has become imperative. Additionally, to comply with ever-stricter limits on 〖"CO" 〗_"2" emissions, it is crucial to develop advanced control systems that enhance traditional engine management systems in order to reduce fuel consumption. Furthermore, the introduction of new homologation cycles, such as the real driving emissions cycle, compels manufacturers to bridge the gap between engine operation in laboratory tests and real-world conditions. Within this context, this thesis showcases the performance and cost benefits achievable through the implementation of an auto-adaptive closed-loop control system, leveraging in-cylinder pressure sensors in a heavy-duty diesel engine designed for mining applications. Additionally, the thesis explores the promising prospect of real-time self-adaptive machine learning models, particularly neural networks, to develop an automatic system, using in-cylinder pressure sensors for the precise calibration of the target combustion phase and optimal spark advance in a spark-ignition engines. To facilitate the application of these combustion process feedback-based algorithms in production applications, the thesis discusses the results obtained from the development of a cost-effective sensor for indirect cylinder pressure measurement. Finally, to ensure the quality control of the proposed affordable sensor, the thesis provides a comprehensive account of the design and validation process for a piezoelectric washer test system.
Resumo:
Nowadays, the development of intelligent and autonomous vehicles used to perform agricultural activities is essential to improve quantity and quality of agricultural productions. Moreover, with automation techniques it is possible to reduce the usage of agrochemicals and minimize the pollution. The University of Bologna is developing an innovative system for orchard management called ORTO (Orchard Rapid Transportation System). This system involves an autonomous electric vehicle capable to perform agricultural activities inside an orchard structure. The vehicle is equipped with an implement capable to perform different tasks. The purpose of this thesis project is to control the vehicle and the implement to perform an inter-row grass mowing. This kind of task requires a synchronized motion between the traction motors and the implement motors. A motion control system has been developed to generate trajectories and manage their synchronization. Two main trajectories type have been used: a five order polynomial trajectory and a trapezoidal trajectory. These two kinds of trajectories have been chosen in order to perform a uniform grass mowing, paying a particular attention to the constrains of the system. To synchronize the motions, the electronic cams approach has been adopted. A master profile has been generated and all the trajectories have been linked to the master motion. Moreover, a safety system has been developed. The aim of this system is firstly to improve the safety during the motion, furthermore it allows to manage obstacle detection and avoidance. Using some particular techniques obstacles can be detected and recovery action can be performed to overcome the problem. Once the measured force reaches the predefined force threshold, then the vehicle stops immediately its motion. The whole project has been developed by employing Matlab and Simulink. Eventually, the software has been translated into C code and executed on the TI Lauchpad XL board.
Resumo:
This thesis project studies the agent identity privacy problem in the scalar linear quadratic Gaussian (LQG) control system. For the agent identity privacy problem in the LQG control, privacy models and privacy measures have to be established first. It depends on a trajectory of correlated data rather than a single observation. I propose here privacy models and the corresponding privacy measures by taking into account the two characteristics. The agent identity is a binary hypothesis: Agent A or Agent B. An eavesdropper is assumed to make a hypothesis testing on the agent identity based on the intercepted environment state sequence. The privacy risk is measured by the Kullback-Leibler divergence between the probability distributions of state sequences under two hypotheses. By taking into account both the accumulative control reward and privacy risk, an optimization problem of the policy of Agent B is formulated. The optimal deterministic privacy-preserving LQG policy of Agent B is a linear mapping. A sufficient condition is given to guarantee that the optimal deterministic privacy-preserving policy is time-invariant in the asymptotic regime. An independent Gaussian random variable cannot improve the performance of Agent B. The numerical experiments justify the theoretic results and illustrate the reward-privacy trade-off. Based on the privacy model and the LQG control model, I have formulated the mathematical problems for the agent identity privacy problem in LQG. The formulated problems address the two design objectives: to maximize the control reward and to minimize the privacy risk. I have conducted theoretic analysis on the LQG control policy in the agent identity privacy problem and the trade-off between the control reward and the privacy risk.Finally, the theoretic results are justified by numerical experiments. From the numerical results, I expected to have some interesting observations and insights, which are explained in the last chapter.
Resumo:
In this thesis, the problem of controlling a quadrotor UAV is considered. It is done by presenting an original control system, designed as a combination of Neural Networks and Disturbance Observer, using a composite learning approach for a system of the second order, which is a novel methodology in literature. After a brief introduction about the quadrotors, the concepts needed to understand the controller are presented, such as the main notions of advanced control, the basic structure and design of a Neural Network, the modeling of a quadrotor and its dynamics. The full simulator, developed on the MATLAB Simulink environment, used throughout the whole thesis, is also shown. For the guidance and control purposes, a Sliding Mode Controller, used as a reference, it is firstly introduced, and its theory and implementation on the simulator are illustrated. Finally the original controller is introduced, through its novel formulation, and implementation on the model. The effectiveness and robustness of the two controllers are then proven by extensive simulations in all different conditions of external disturbance and faults.
Resumo:
In this thesis the design of a pressure regulation system for space propulsion engines (electric and cold gas) has been performed. The Bang-Bang Control (BBC) method has been implemented through the open/close command on a solenoid valve, and the mass flow rate of the propellant has been fixed with suitable flow restrictors. At the beginning, research for the comparison between mechanical and electronic (for BBC) pressure regulators has been performed, which resulted in enough advantages for the selection of the second valve type. The major advantage is about the possibility to have a variable outlet pressure with a variable inlet pressure through a simple remote command, while in mechanical pressure regulators the ratio between inlet and outlet pressures must be mechanically settled. Different pressure control schemes have been analyzed, changing number of solenoid valves, flow restrictors and plenums. For each scheme the valve’s frequencies were evaluated with simplified mathematical models and with the use of simulators implemented on Python; the results obtained from those two methods matched quiet well. From all the schemes it was possible to observe varying frequency and duty cycle, for changes in different parameters. This results, after experimental checks, can be used to design the control system for a given total number of cycles that a specific solenoid valve can guarantee. Finally, tests were performed and it was possible to verify the goodness of the control system. Moreover from the tests it was possible to deduce some tips in order to optimize the running of the simulator.