981 resultados para microplastiche, polistirene, pirolisi analitica, GC-MS, tessuti biologici
Resumo:
Changes in the profile of volatile compounds after the heating of refined soybean oil without adding antioxidants, and treated with quercetin and chlorogenic acid (5-CQA) were investigated by GC/FID, GC/MS, and GC/SNIFFING. The heating temperature of the oil sample was 20 °C for the first minute, and then it was increased up to 160 °C at the rate of 10 °C min-1. The final temperature was kept for 10 minutes. 19 volatiles were identified in the heated samples without antioxidants. Medium-chain carbonyls predominated in the volatile fraction, mainly 2-heptenal, 2,4-heptadienal and 2,4-decadienal. Around 11 to 15 volatile compounds were detected in the heated samples treated with 5-CQA and quercetin, respectively. 5-CQA was not very efficient in delaying the formation of oxidative volatile compounds. The samples quercetin presented lower proportion of carbonyls with C6-C9.. The GC peak area data were used as an approach to estimate the relative content of each volatile compound and indicate that the samples treated with quercetin (p < 0.05) had significantly lower values for, 1-pentanol, 2,4-heptadienal, and 2,4-decadienal compared with those without antioxidants and treated with 5-CQA. GC/SNIFFING analysis revealed a smaller odor perception in the samples treated with 5-CQA compared to those without antioxidants. No odor was perceived in the heated samples treated with quercetin. These results indicate greater effectiveness of quercetin in delaying the formation of oxidative volatile compounds in soybean oils subjected to mild heating conditions. Apparently, biopolyphenols used in the present work showed good oxidative stability since no new volatile compound was detected in the heated samples treated with them.
Resumo:
The objective of this work was to identify and verify the influence of time and temperature on the volatile compounds profile of fresh cut peki. Peki fruits were washed, sanitized, their kernels were extracted, and they were packaged and stored for 15 days at 0, 5, and 10 °C and 6 days at 22 °C. The volatiles compounds were analyzed by GC - MS. Ethyl hexanoate and ethyl octanoate were found in higher percentages, 63 and 16.3%, respectively. The determined volatiles were not influenced by the storage period. Hexanoic acid, ethyl 2-octenoate and ethyl decanoate were not influenced by the different temperatures. The temperatures 0, 5, and 10 °C did not influence ethyl hexanoate, ethyl 2-hexenoate and ethyl octanoate either. In addition, the temperatures 5, 10, and 22 °C did not influence ethyl hexanoate, cis-β-ocimene and ethyl octanoate. The temperature of 22 °C determined higher percentages of ethyl hexanoate and lower percentages of ethyl octanoate, in comparison to the temperature of 0 °C, and higher percentages of ethyl 2-hexenoate in comparison to the temperatures of 0, 5, and 10 °C. The temperature of 5 °C determined higher percentage of cis-β-ocimene when compared with the temperature of 0 °C. The storage temperatures of 0 and 5 °C were the most appropriate for the conservation.
Resumo:
The volatile components of noni at two ripening stages were isolated by headspace solid-phase microextraction using 65 µm Polydimethylsiloxane-Divinylbenzene (PDMS/DVB) fibers and analyzed using GC/MS. Both maturation stages had several compounds in common. Ninety-six compounds were identified, from which octanoic acid ( 70% of total extract) and hexanoic acid (
8% of total extract) were found to be the major constituents. Due to noni maturation, octanoic acid, decanoic acid and 2E-nonenal decreased their concentrations, while some esters (methyl hexanoate, methyl octanoate, ethyl octanoate and methyl 4E-decenoate), which their fruity odor notes, increased their contents. Two unsaturated esters, reported for the first time in this fruit, 3-methyl-3-buten-1-yl hexanoate and 3-methyl-3-buten-1-yl octanoate, significantly decreased their concentration in the ripe to over-ripe fruits.
Resumo:
Noni is a fruit that has interested the scientific community due to its medicinal and functional activities. Different products that contain noni are already in the market, but their consumption could be impaired by their distinctive unpleasant aroma and flavor. The aim of this work was to evaluate the noni pulp volatile profile by dynamic headspace and gas chromatography-mass spectrometry. Thirty seven volatile compounds were detected, mainly alcohols (63.3%), esters (26.9%), cetones (7.4%), and acids (1.2%).
Resumo:
Cinnamomum zeylanicum Blume, Lauraceae, has long been known for having many biological properties. This study aimed to identify the constituents of the essential oil from C. zeylanicum leaves using GC-MS and to assess its inhibitory effect on Salmonella enterica, Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa based on MIC and MBC determination and kill-time study. Eugenol (73.27%) was the most prevalent compound in the essential oil followed by trans-β-cariophyllene (5.38%), linalool (3.31%), and alcohol cinamic acetate (2.53%). The results showed an interesting antibacterial activity of the oil with MIC ranging from 1.25 to 10 µL.mL-1. MBC values were in the range of 20 - 80 µL.mL-1. A concentration of 10 and 40 µL.mL-1 of the essential oil caused a fast and steady decrease in viable cell count (2 to 5 log cycles) of all assayed strains along 24 hours. A concentration of 40 µL.mL-1 of the oil provided a total elimination of the initial inocula of S. aureus after 2 hours. These results show the possibility of regarding the essential oil from C. zeylanicum leaves as alternative sources of antimicrobial compounds to be applied in food conservation systems.
Resumo:
Guava nectars were formulated for approximately 10, 12, or 14 ºBrix, with 40% guava pulp. Sodium benzoate, 500 mg.kg-1 was used as preservative. The Brix value was adjusted with saturated sucrose syrup. The guava nectar was pasteurized (85 ºC/42 seconds) in tubular heat exchanger and then hot filled in 500 mL white glass bottles. The products were stored either at room temperature (25 ± 5 ºC) or refrigerated (5 ± 2 ºC) under fluorescent light exposure and analyzed on the day after processing (time zero) and also 40, 80, and 120 days of storage. Eight compounds were identified and quantified by Gas Chromatography (GC) -Mass Spectrometry (MS): hexanal, (E)-hex-2-enal, 1-hexenol, (Z)-hex-3-enol, (Z)-hex-3-enyl acetate, phenyl-3-propyl acetate, cinnamyl acetate, and acetic acid. There was no significant effect of thermal treatment on the volatile compound concentrations, except for a significant decrease (p = 0.0001) in hexanal and (Z)-hex-3-enyl acetate (p = 0.0029). As for the storage time, there was a much greater decrease in the esters contents, such as (Z)-hex-3-enyl and phenyl-3-propyl acetates. Cinnamyl acetate had the greatest decrease over storage time. Refrigeration was better than room temperature for guava nectar volatile compounds stability over storage time, mainly for esters compounds, which are important for the product aroma and flavor
Resumo:
This study aimed at assessing the stability of passion fruit juice in glass bottles during a 120-day storage period, regarding its volatile compounds profile and sensory properties (aroma and flavor). Samples were obtained from a Brazilian tropical juice industry (Fortaleza, Brazil) and submitted to sensory and chromatographic analyses. The characteristic aroma and flavor of passion fruit were evaluated by a trained panel with a non-structured scale of 9 cm. The headspace volatile compounds were isolated from the product by suction and trapped in Porapak Q, analyzed through high-resolution gas chromatography and identified through gas chromatography-mass spectrometry (GC-MS). Twelve odoriferous compounds were monitored: ethyl butanoate, ethyl propanoate, 3-methyl-1-butanol, 3-methyl-2-butenol, (E)-3-hexenol, (Z)-3-hexenol, 3-methylbutyl acetate, benzaldehyde, ethyl hexanoate, hexyl acetate, limonene and furfural. The slight variations observed in the volatile profile were not enough to provoke significant changes in the characteristic aroma and flavor of the passion fruit juice.
Resumo:
Plum (Prunus salicina Lindl. cv. Harry Pickstone), a China indigenous fruit, is widely produced and consumed in countries such as Japan and Brazil. The practice of thinning is common in horticulture and the fruits removed are discarded as waste. Like the great majority of vegetables, these thinning discards also contain essential oils which have not been investigated until the present time. The extraction of the plum thinning discards volatile oil, through the hydrodistillation method, produced a yield of 0.06% (m/m) and a total of 21 components were identified, with 11 of them being responsible for 72,9% of the total oil composition. The major compounds determined through GC and GC-MS were Z-α-bisabolene (13.7%), n-hexadecanoic acid (12.7%), phytol (12.7%), and β-caryophyllene (10.4%).
Resumo:
Simultaneous Distillation-Extraction (SDE) and headspace-solid phase microextraction (HS-SPME) combined with GC-FID and GC-MS were used to analyze volatile compounds from plum (Prunus domestica L. cv. Horvin) and to estimate the most odor-active compounds by application of the Odor Activity Values (OAV). The analyses led to the identification of 148 components, including 58 esters, 23 terpenoids, 14 aldehydes, 11 alcohols, 10 ketones, 9 alkanes, 7 acids, 4 lactones, 3 phenols, and other 9 compounds of different structures. According to the results of SDE-GC-MS, SPME-GC-MS and OAV, ethyl 2-methylbutanoate, hexyl acetate, (E)-2-nonenal, ethyl butanoate, (E)-2-decenal, ethyl hexanoate, nonanal, decanal, (E)-β-ionone, Γ-dodecalactone, (Z)-3-hexenyl acetate, pentyl acetate, linalool, Γ-decalactone, butyl acetate, limonene, propyl acetate, Δ-decalactone, diethyl sulfide, (E)-2-hexenyl acetate, ethyl heptanoate, (Z)-3-hexenol, (Z)-3-hexenyl hexanoate, eugenol, (E)-2-hexenal, ethyl pentanoate, hexyl 2-methylbutanoate, isopentyl hexanoate, 1-hexanol, Γ-nonalactone, myrcene, octyl acetate, phenylacetaldehyde, 1-butanol, isobutyl acetate, (E)-2-heptenal, octadecanal, and nerol are characteristic odor active compounds in fresh plums since they showed concentrations far above their odor thresholds.
Resumo:
The conversion of p-coumaric acid, ferulic acid, and caffeic acid into 4-ethylphenol, 4-ethylguaiacol and 4-ethylcatechol was studied in Dekkera bruxellensis ISA 1791 under defined conditions in a synthetic medium and in a red wine. Liquid chromatography (HPLC-DAD) was used to quantify the phenolic acids, and gas chromatography (GC) coupled to a FID detector was used to quantify volatile phenols using a novel analytical methodology that does not require sample derivatization. Identification was achieved by gas chromatography-mass detection (GC-MS). The results show that phenolic acids concentration decreases while volatile phenols concentration increases. The proportion of caffeic acid taken up by Dekkera bruxellensis is lower than that for p-coumaric or ferulic acid; therefore less 4-ethylcatechol is formed. More important, 4-ethylcathecol synthesis by Dekkera bruxellensis in wine has never been demonstrated so far. These results contribute decisively to a better understanding of the origin of the volatile phenols in wines. The accumulation of these compounds in wine is nowadays regarded as one of the key factors of quality control.
Resumo:
Existing data about the aroma of fresh-cut watermelon and the metabolic changes that occur with minimal processing are scarce. Given the close relationship that exists between aroma, texture, and quality characteristics, it is necessary to investigate the changes in the volatile profile and texture of watermelon, a fruit extensively sold in supermarket chains throughout Brazil. The objective of this work was to analyze the volatile profile using solid phase microextraction (SPME) as well as texture changes in fresh-cut watermelon stored at 5 °C for ten days. Chromatography associated with sensory analysis (sniffing) led us to conclude that 9-carbon (C9) alcohols and aldehydes are the major responsible for the flavor and aroma of minimally processed watermelon stored at 5 ± 1 °C/90 ± 5% RH for ten days, and also that the aroma diminishes in intensity with storage, but it does not affect the final quality of the product. It was noted that the amount of drained liquid, soluble pectin, and weight loss increased during storage concurrently with a reduction in firmness and a structural breakdown of the cells. Pectin methyl esterase activity remained constant and polygalacturonase activity was not detected.
Resumo:
Increased preference for healthy and functional foods could be an opportunity to increase the consumption of clarified cashew apple juice. Given its level of fructose, glucose, and vitamin C, it can be used as a base in blends. However, its characteristic odor can interfere with the acceptance of these formulations, especially by consumers who are not familiar with cashew aroma. The aim of this study was to evaluate the effect of treatment with macroporous resins (FPA54, FPX66, XAD761, and XAD4) on the volatile profile and physicochemical characteristics of clarified cashew apple juice. After the treatment with the resins, the volatile profile was evaluated using solid-phase microextraction (SPME) and gas chromatography/mass spectrometry (GC/MS). The physicochemical analyses performed were: pH, soluble solids (ºBrix), total titrable acidity, reducing sugars, and vitamin C. Gas chromatography analyses showed that XAD4 and FPX66 led to a reduction of the initial amount of volatile compounds to 14.05% and 15.72%, respectively. These two resins also did not affect the physicochemical characteristics of the clarified cashew apple juice.
Resumo:
The objective of this study was to compare the sensory quality and the volatile compound profile of new varieties of Capsicum chinense pepper (CNPH 4080 a strain of'Cumari-do-Pará' and BRS Seriema) with a known commercial variety (Biquinho). Volatiles were isolated from the headspace of fresh fruit by SPME and identified by GC-MS. Pickled peppers were produced for sensory evaluation. Aroma descriptors were evaluated by Check-All-That-Apply (CATA) method, and the frequency data were submitted to Correspondence Analysis. Flavor acceptance was assessed by hedonic scale and analyzed by ANOVA. BRS Seriema showed the richest volatile profile, with 55 identified compounds, and up to 40% were compounds with sweet aroma notes. CNPH 4080 showed similar volatile profile to that of Biquinho pepper, but it had higher amounts of pepper-like and green-note compounds. The samples did not differ in terms of flavor acceptance, but they showed differences in aroma quality confirming the differences found in the volatile profiles. The C. chinense varieties developed by Embrapa proved to be more aromatic than Biquinho variety, and were well accepted by the judges.
Resumo:
The aroma characteristics of wines from four Vitis vinifera grape varieties (‘Cabernet sauvignon’, ‘Merlot’, ‘Chardonnay’, and ‘Italian Riesling’) grown in three shoot positions were evaluated by HS-SPME-GC/MS. In this study, the numerous significant differences found in most of the aromatic compounds influence of different shoot positions on the quality of wine. The results showed that the middle shoot position increased significantly the aroma concentration in the majority of wines investigated. The volatile components showing the greatest differences in the wines of different cultivars were aldehydes and terpenes. 8 and 11 compounds were found and quantified (OAVs>1) in the two red wines and white wines at concentrations higher than their corresponding odor thresholds, respectively; and therefore they significantly contributed to the wine aromas. According to their OAVs, fruity, floral, cheese and fatty aroma strongly influenced the characteristics of the four monovarietal wines, while the two white wines showed the green and fresh aroma characteristics. These results are related to the different microclimate of the canopies of the different shoot positions and varieties. They suggest that proper elevating the fruiting zones could improve the accumulation of aroma compounds in wines from the different varieties. On the other hand, grapevines trained to systems with uniform fruiting zones could improve the quality of wine.
Resumo:
Haihtuvat orgaaniset yhdisteet (eng. volatile organic compound, VOC) ovat yksi yleisimmistä ja laajimmalle levinneistä ympäristökontaminaattiryhmistä. VOC- yhdisteryhmän yhdisteet ovat määritelmän mukaisesti haihtuvia, molekyylimassaltaan pieniä (16-250 Da) yhdisteitä, joista suurin osa on joko haitallisia tai myrkyllisiä. VOC- yhdisteet pääasiallisesti emittoituvat ympäristöön ihmisen toiminnasta johtuen (teollisuus, autot, maatalous) ja päätyvät luonnossa vesistöihin ja maaperään. Ihmisille haitallisten ominaisuuksien lisäksi, VOC-yhdisteet vaikuttavat esimerkiksi ilmaston lämpenemiseen ja savusumujen syntyyn. Edellä mainittujen ominaisuuksien vuoksi on tärkeää analysoida VOC-yhdisteiden pitoisuuksia. Haihtuvien orgaanisten yhdisteiden ryhmän laajuus, ja fysikaalisten sekä kemiallisten ominaisuuksien (poolisuus, höyrynpaine, vesiliukoisuus) erot asettavat haastetta niiden analysointiin. Yleisimmin VOC-yhdisteitä analysoidaan kaasukromatografia- massaspektrometrin avulla. Pro gradu -tutkielman kirjallisessa osassa käydään läpi VOC-yhdisteiden analytiikassa käytettyjä erilaisia GC-MS-laitekokonaisuuksia ja niiden ominaisuuksia. Lisäksi keskitytään VOC-yhdisteiden erilaisiin näytteenkäsittelymenetelmiin vesi-, maa- ja sedimettinäytteissä. Kokeellisessa osassa analysoitiin kuutta kynureniinipolun metaboliittia solunäytteistä. Kynureniinipolku on nisäkkäillä tärkein tryptofaanin katabolinen polku. Kynureniinipolku aktivoituu entsymaattisesti esimerkiksi tulehdusten, hermostoa rappeuttavien prosessien ja immuunivasteen aikana. Kynureniinipolun yhdisteiden uskotaan lisäävän solun toksisuutta, mutta parantavan sen kykyä lisääntyä ja vähentävän solukuolleisuutta. Esimerkiksi 3-hydroksikynureniinin lisääntynyt määrä on yhdistetty hermostoperäisiin sairauksiin, kuten Huntingtonin- ja Parkinsonin tautiin. Kokeellisessa osassa luotiin yhdistespesifinen MRM-menetelmä, ultra korkean erotuskyvyn nestekromatografi-sähkösumutusionisaatio- kolmoiskvadrupolimassaspektrometrille. Luodulla ja optimoidulla menetelmällä kvantitoitiin soluviljelmänäytteistä samanaikaisesti L-kynureniini-, kynureniinihappo-, 3-hydroksikynureniini-, antraniilihappo-, 3-hydroksiantraniilihappo-, sekä kinoliinihappo-pitoisuudet sisäisen- ja ulkoisen standardin menetelmällä. Solunäytteiden päämetaboliiteiksi havaittiin kynureniini, kunyreniinihappo, sekä antraniilihappo. Ainoastaan 3-hydroksikynureniinihappoa ja kinoliinihappoa ei havaittu yhdestäkään näytteestä.