962 resultados para microbiota ruminal
Resumo:
In ruminal drinkers (RD) ingested milk is transported into the rumen and not into the abomasum. Because this is followed by changes in digestibility and absorption, we have tested whether this is associated with postprandial metabolic and endocrine changes. Unweaned, bucket-fed calves (one RD, two controls) were studied on seven farms. On d 1, after metabolic and endocrine 12-h profiles were studied, RD and one control calf were fed for 10 d by nipple, whereas the other control calf was fed by bucket. On d 11, metabolic and endocrine 12-h profiles were again studied. On d 1, mean plasma concentrations of glucose, triglycerides, urea, insulin, insulin-like growth factor-1 (IGF-1), 3,5,3'-triiodothyronine (T3), thyroxine (T4) and leptin were significantly different between RD and controls, whereas mean concentrations of non-esterified fatty acids (NEFA), total protein, albumin, and glucagon did not differ significantly among groups. In RD concentrations of glucose, NEFA, insulin, growth hormone, IGF-1, and T4 were higher, and of urea were lower on d 11 than on d 1. Glucose and insulin concentrations increased postprandially in healthy calves on d 1, but barely in RD and remained lower than in controls, and there was no rise of NEFA and triglyceride concentrations on d 1 after the initial postprandial decrease in RD, in contrast to controls. But on d 11 postprandial responses of these four traits were similar in RD and controls and urea and T4 concentrations on d 11 became normalized. However, glucose and T3 concentrations in RD on d 11 were still lower than in one or both control groups. In conclusion, various metabolic and endocrine traits in RD differed from healthy controls. Drinking by floating nipple instead of drinking from bucket for 10 d normalized several metabolic and endocrine traits in RD.
Resumo:
Background: Periodontitis and caries are common diseases in older adults. Aims: To test if rinsing with chlorhexidine over five years has an impact on the subgingival microbiota. Methods: In a double blind randomized five years chlorhexidine rinse study clinical oral data and subgingival plaque samples were analyzed by the checkerboard DNA-DNA hybridization method. Results: At year 5 subject mean age was 71.2 years (S.D. + 4.1) (56.2% women). Only in subjects with no bone loss did the chlorhexidine rinse group subjects presented with lower total bacterial (DNA) counts (mean diff: 63.1 (x105), S.E diff + 30.1 (x105), 95%CI: 0.8 to 120.5 (x105), p<0.05) [(i.e.Lactobacillus acidophilicus (p<0.05) , Streptococcus oralis (p<0.05), Eikenella. corrodens (p< 0.05), C. gracilis (p<0.01), F.nucl.sp. nucleatum (p< 0.02), Fusobacterium nucl. sp. polymorphum (p<0.02), Neisseria mucosa (p<0.02), Leptothrichia buccalis (p<0.02), and Selenomonas noxia (p<0.050)]. Higher bacterial loads were found for the green (p<0.05), yellow (streptococci spp) (p<0.01), and the ‘other' complexes (p<0.01). Conclusions: Independent of probing pocket depth, older subjects carry a large variety of bacteria associated with periodontitis. The oral microbiota in older subjects is linked to alveolar bone loss and not to probing depth. Chlorhexidine may provide a benefit in preventing periodontitis in older persons.
Resumo:
The aim of the present study was to measure transit patterns of nutrients and the absorptive ability in ruminal drinkers (RDs) compared with healthy unweaned calves. The acetaminophen (paracetamol) absorption test was used to characterize the oroduodenal transit rate. Clinical examination and the analysis of various blood parameters provided supplementary information on digestive processes. Three unweaned bucket-fed calves (one RD and two healthy controls) each from seven Swiss dairy farms were included in the study. Measurements (tests 1 and 2) were performed twice at an interval of 10 days. Between tests, the feeding technique of the RDs and one control calf per farm was changed to feeding with a nipple instead of by bucket (without nipple). Acetaminophen appearance in the blood was delayed and reduced in RDs compared with the controls. Acid-base metabolism and several haematological and metabolic parameters differed markedly between RDs and healthy controls. The characteristics of the oroduodenal transit rate, absorptive abilities and clinical status in RDs were nearly normalised within 10 days of reconditioning.
Resumo:
BACKGROUND: Information on the efficacy of chlorhexidine (CHX) rinsing on the subgingival microbiota is limited. This study tested if intermittent CHX rinsing over 5 years had an impact on the subgingival microbiota. METHODS: Subgingival plaque samples were analyzed by the checkerboard DNA-DNA hybridization method in a double-blind randomized CHX rinse study. RESULTS: A total of 210 subjects were included. The mean age of the subjects was 71.7 (+/- 4.1) years, and 56.2% were women. Evidence of alveolar bone loss was found in 39% of subjects. Bacterial loads were not correlated significantly with probing depth. At year 5, subjects in the CHX rinse group with no evidence of bone loss presented with lower total bacterial counts than control subjects with no bone loss. The levels of the following bacteria were significantly lower in the CHX group: Lactobacillus acidophilus (P <0.05), Eikenella corrodens (P <0.05), Fusobacterium nucleatum sp. nucleatum (P <0.01), Treponema denticola (P <0.05), Leptotrichia buccalis (P <0.05), and Eubacterium saburreum (P <0.05). No differences in bacterial loads were found between CHX and control rinse subjects with alveolar bone loss. CONCLUSIONS: Older subjects with or without periodontitis carry a large variety of bacteria associated with periodontitis. Intermittent rinsing with CHX may provide a preventive benefit in reducing levels of bacteria but only in subjects without alveolar bone loss.
Resumo:
Background: The goal of this study was to determine whether site-specific differences in the subgingival microbiota could be detected by the checkerboard method in subjects with periodontitis. Methods: Subjects with at least six periodontal pockets with a probing depth (PD) between 5 and 7 mm were enrolled in the study. Subgingival plaque samples were collected with sterile curets by a single-stroke procedure at six selected periodontal sites from 161 subjects (966 subgingival sites). Subgingival bacterial samples were assayed with the checkerboard DNA-DNA hybridization method identifying 37 species. Results: Probing depths of 5, 6, and 7 mm were found at 50% (n = 483), 34% (n = 328), and 16% (n = 155) of sites, respectively. Statistical analysis failed to demonstrate differences in the sum of bacterial counts by tooth type (P = 0.18) or specific location of the sample (P = 0.78). With the exceptions of Campylobacter gracilis (P <0.001) and Actinomyces naeslundii (P <0.001), analysis by general linear model multivariate regression failed to identify subject or sample location factors as explanatory to microbiologic results. A trend of difference in bacterial load by tooth type was found for Prevotella nigrescens (P <0.01). At a cutoff level of >/=1.0 x 10(5), Porphyromonas gingivalis and Tannerella forsythia (previously T. forsythensis) were present at 48.0% to 56.3% and 46.0% to 51.2% of sampled sites, respectively. Conclusions: Given the similarities in the clinical evidence of periodontitis, the presence and levels of 37 species commonly studied in periodontitis are similar, with no differences between molar, premolar, and incisor/cuspid subgingival sites. This may facilitate microbiologic sampling strategies in subjects during periodontal therapy.
Resumo:
Escherichia coli O157:H7 is a food-borne pathogen causing hemorrhagic colitis and hemolytic-uremic syndrome, especially in children. The main virulence factor responsible for the more serious disease is the Shiga toxin 2 (Stx2), which is released in the gut after oral ingestion of the organism. Although it is accepted that the amount of Stx2 produced by E. coli O157:H7 in the gut is critical for the development of disease, the eukaryotic or prokaryotic gut factors that modulate Stx2 synthesis are largely unknown. In this study, we examined the influence of prokaryotic molecules released by a complex human microbiota on Stx2 synthesis by E. coli O157:H7. Stx2 synthesis was assessed after growth of E. coli O157:H7 in cecal contents of gnotobiotic rats colonized with human microbiota or in conditioned medium having supported the growth of complex human microbiota. Extracellular prokaryotic molecules produced by the commensal microbiota repress stx(2) mRNA expression and Stx2 production by inhibiting the spontaneous and induced lytic cycle mediated by RecA. These molecules, with a molecular mass of below 3 kDa, are produced in part by Bacteroides thetaiotaomicron, a predominant species of the normal human intestinal microbiota. The microbiota-induced stx(2) repression is independent of the known quorum-sensing pathways described in E. coli O157:H7 involving SdiA, QseA, QseC, or autoinducer 3. Our findings demonstrate for the first time the regulatory activity of a soluble factor produced by the complex human digestive microbiota on a bacterial virulence factor in a physiologically relevant context.
Resumo:
Commensal bacteria in the lower intestine of mammals are 10 times as numerous as the body's cells. We investigated the relative importance of different immune mechanisms in limiting the spread of the intestinal microbiota. Here, we reveal a flexible continuum between innate and adaptive immune function in containing commensal microbes. Mice deficient in critical innate immune functions such as Toll-like receptor signaling or oxidative burst production spontaneously produce high-titer serum antibodies against their commensal microbiota. These antibody responses are functionally essential to maintain host-commensal mutualism in vivo in the face of innate immune deficiency. Spontaneous hyper-activation of adaptive immunity against the intestinal microbiota, secondary to innate immune deficiency, may clarify the underlying mechanisms of inflammatory diseases where immune dysfunction is implicated.
Resumo:
BACKGROUND: We investigated clinical and subgingival microbiologic changes during pregnancy in 20 consecutive pregnant women > or =18 years not receiving dental care. METHODS: Bacterial samples from weeks 12, 28, and 36 of pregnancy and at 4 to 6 weeks postpartum were processed for 37 species by checkerboard DNA-DNA hybridization. Clinical periodontal data were collected at week 12 and at 4 to 6 weeks postpartum, and bleeding on probing (BOP) was recorded at sites sampled at the four time points. RESULTS: The mean BOP at week 12 and postpartum was 40.1% +/- 18.2% and 27.4% +/- 12.5%, respectively. The corresponding mean BOP at microbiologic test sites was 15% (week 12) and 21% (postpartum; not statistically significant). Total bacterial counts decreased between week 12 and postpartum (P <0.01). Increased bacterial counts over time were found for Neisseria mucosa (P <0.001). Lower counts (P <0.001) were found for Capnocytophaga ochracea, Capnocytophaga sputigena, Eubacterium saburreum, Fusobacterium nucleatum naviforme, Fusobacterium nucleatum polymorphum, Leptotrichia buccalis, Parvimonas micra (previously Peptostreptococcus micros or Micromonas micros), Prevotella intermedia, Prevotella melaninogenica, Staphylococcus aureus, Streptococcus anginosus, Streptococcus intermedius, Streptococcus mutans, Streptococcus oralis, Streptococcus sanguinis, Selenomonas noxia, and Veillonella parvula. No changes occurred between weeks 12 and 28 of pregnancy. Counts of Aggregatibacter actinomycetemcomitans (previously Actinobacillus actinomycetemcomitans), Porphyromonas gingivalis, Tannerella forsythia (previously T. forsythensis), and Treponema denticola did not change. Counts of P. gingivalis and T. forsythia at week 12 were associated with gingivitis (P <0.001). CONCLUSIONS: Subgingival levels of bacteria associated with periodontitis did not change. P. gingivalis and T. forsythia counts were associated with BOP at week 12. A decrease was found in 17 of 37 species from week 12 to postpartum. Only counts of N. mucosa increased.
Resumo:
Six wethers, fitted with ruminal and duodenal cannulae, were utilized in a 6 x 6 Latin Square metabolism trial to determine efficiency of microbial protein synthesis in the rumen of sheep fed forages with varying nutritional quality. Ground alfalfa hay, oat-berseem clover hay, and baled corn crop residues were fed at an ad libitum or limited intake level. Chromium-mordanted fiber, cobalt- EDTA, and purines were used to determine digesta flow and solid passage rate, dilution rate, and microbial protein production, respectively. Sheep fed alfalfa hay had greater organic matter (OM) intakes, and amounts of OM apparently and truly ruminally digested (g/d; P < .05) than sheep fed either oat-berseem clover or corn crop residues at the ad libitum intake level. Rates of slow solid and liquid passage, and postfeeding ruminal ammonia-nitrogen (N) and volatile fatty acids (VFA) concentrations were lower (P < .05) in sheep fed corn crop residues than those fed alfalfa or oat-berseem clover hay. Total duodenal flows (g/d) and efficiencies of ruminal synthesis (g crude protein/100 g of OM truly digested; P < .05) of microbial protein were less in sheep fed corn crop residues than in sheep fed alfalfa, and oatberseem clover ad libitum. Whereas total duodenal microbial-N flow was related to organic matter intake (OMI; r2 = .97) and OM truly digested in the rumen (OMTDR; r2 = .97), microbial efficiency was related to g of nitroge truly digested in the rumen (NTDR)/100 g of OMTDR (r2 = .82) and slow solid passage rate (r2 = .91).
Resumo:
OBJECTIVES This study aims to assess the effects of rinsing with zinc- and chlorhexidine-containing mouth rinse with or without adjunct tongue scraping on volatile sulfur compounds (VSCs) in breath air, and the microbiota at the dorsum of the tongue. MATERIAL AND METHODS A randomized single-masked controlled clinical trial with a cross-over study design over 14 days including 21 subjects was performed. Bacterial samples from the dorsum of the tongue were assayed by checkerboard DNA-DNA hybridization. RESULTS No halitosis (identified by VSC assessments) at day 14 was identified in 12/21 subjects with active rinse alone, in 10/21 with adjunct use of tongue scraper, in 1/21 for negative control rinse alone, and in 3/21 in the control and tongue scraping sequence. At day 14, significantly lower counts were identified only in the active rinse sequence (p < 0.001) for 15/78 species including, Fusobacterium sp., Porphyromonas gingivalis, Pseudomonas aeruginosa, Staphylococcus aureus, and Tannerella forsythia. A decrease in bacteria from baseline to day 14 was found in successfully treated subjects for 9/74 species including: P. gingivalis, Prevotella melaninogenica, S. aureus, and Treponema denticola. Baseline VSC scores were correlated with several bacterial species. The use of a tongue scraper combined with active rinse did not change the levels of VSC compared to rinsing alone. CONCLUSIONS VSC scores were not associated with bacterial counts in samples taken from the dorsum of the tongue. The active rinse alone containing zinc and chlorhexidine had effects on intra-oral halitosis and reduced bacterial counts of species associated with malodor. Tongue scraping provided no beneficial effects on the microbiota studied. CLINICAL RELEVANCE Periodontally healthy subjects with intra-oral halitosis benefit from daily rinsing with zinc- and chlorhexidine-containing mouth rinse.