957 resultados para microbial activity


Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three different cDNAs, Prh-19, Prh-26, and Prh-43 [3′-phosphoadenosine-5′-phosphosulfate (PAPS) reductase homolog], have been isolated by complementation of an Escherichia coli cysH mutant, defective in PAPS reductase activity, to prototrophy with an Arabidopsis thaliana cDNA library in the expression vector λYES. Sequence analysis of the cDNAs revealed continuous open reading frames encoding polypeptides of 465, 458, and 453 amino acids, with calculated molecular masses of 51.3, 50.5, and 50.4 kDa, respectively, that have strong homology with fungal, yeast, and bacterial PAPS reductases. However, unlike microbial PAPS reductases, each PRH protein has an N-terminal extension, characteristic of a plastid transit peptide, and a C-terminal extension that has amino acid and deduced three-dimensional homology to thioredoxin proteins. Adenosine 5′-phosphosulfate (APS) was shown to be a much more efficient substrate than PAPS when the activity of the PRH proteins was tested by their ability to convert 35S-labeled substrate to acid-volatile 35S-sulfite. We speculate that the thioredoxin-like domain is involved in catalytic function, and that the PRH proteins may function as novel “APS reductase” enzymes. Southern hybridization analysis showed the presence of a small multigene family in the Arabidopsis genome. RNA blot hybridization with gene-specific probes revealed for each gene the presence of a transcript of ≈1.85 kb in leaves, stems, and roots that increased on sulfate starvation. To our knowledge, this is the first report of the cloning and characterization of plant genes that encode proteins with APS reductase activity and supports the suggestion that APS can be utilized directly, without activation to PAPS, as an intermediary substrate in reductive sulfate assimilation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The distinctive relations between biological activity and isotopic effect recorded in biomarkers (e.g., carbon and sulfur isotope ratios) have allowed scientists to suggest that life originated on this planet nearly 3.8 billion years ago. The existence of life on other planets may be similarly identified by geochemical biomarkers, including the oxygen isotope ratio of phosphate (δ18Op) presented here. At low near-surface temperatures, the exchange of oxygen isotopes between phosphate and water requires enzymatic catalysis. Because enzymes are indicative of cellular activity, the demonstration of enzyme-catalyzed PO4–H2O exchange is indicative of the presence of life. Results of laboratory experiments are presented that clearly show that δ18OP values of inorganic phosphate can be used to detect enzymatic activity and microbial metabolism of phosphate. Applications of δ18Op as a biomarker are presented for two Earth environments relevant to the search for extraterrestrial life: a shallow groundwater reservoir and a marine hydrothermal vent system. With the development of in situ analytical techniques and future planned sample return strategies, δ18Op may provide an important biosignature of the presence of life in extraterrestrial systems such as that on Mars.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sediment samples collected during the expedition "Arctic Ocean '96" with the Swedish ice-breaker ODEN were investigated to estimate for the first time heterotrophic activity and total microbial biomass (size range from bacteria to small metazoans) from the perennially ice-covered central Arctic Ocean. Benthic activities and biomass were evaluated analysing a series of biogenic sediment compounds (i.e. bacterial exoenzymes, total adenylates, DNA, phospholipids, particulate proteins). In contrast to the very time-consuming sorting, enumeration and weight determination, analyses of biochemical sediment parameters may represent a useful method for obtaining rapid information on the ecological situation in a given benthic system. Bacterial cell numbers and biomass were estimated for comparison with biochemically determined biomass data, to evaluate the contribution of the bacterial biomass to the total microbial biomass. It appeared that bacterial biomass made up only 8-31% (average of all stations = 20%) of the total microbial biomass, suggesting a large fraction of other small infaunal organisms within the sediment samples (most probably fungi, yeasts, protozoans such as flagellates, ciliates or amoebae, as well as a fraction of small metazoans). Activity and biomass values determined within this study were generally extremely low, and often even slightly lower than those given for other deep oceanic regions, thus characterizing the seafloor of the central Arctic Ocean as a "benthic desert". Nevertheless, some clear trends in the data could be found, e.g. generally sharply decreasing values within the sediment column, a vague tendency for declining values with increasing water depth of sampling stations, and also differences between various Arctic deep-sea regions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The reductive dechlorination (RD) of tetrachloroethene (PCE) to vinyl chloride (VC) and, to a lesser extent, to ethene (ETH) by an anaerobic microbial community has been investigated by studying the processes and kinetics of the main physiological components of the consortium. Molecular hydrogen, produced by methanol-utilizing acetogens, was the electron donor for the PCE RD to VC and ETH without forming any appreciable amount of other chlorinated intermediates and in the near absence of methanogenic activity. The microbial community structure of the consortium was investigated by preparing a 1 6S rDNA clone library and by fluorescence in situ hybridization (FISH). The PCR primers used in the clone library allowed the harvest of 16SrDNA from both bacterial and archaeal members in the community. A total of 616 clones were screened by RFLP analysis of the clone inserts followed by the sequencing of RFLP group representatives and phylogenetic analysis. The clone library contained sequences mostly from hitherto undescribed bacteria. No sequences similar to those of the known RD bacteria like 'Dehalococcoides ethenogenes' or Dehalobacter restrictus were found in the clone library, and none of these bacteria was present in the RD consortium according to FISH. Almost all clones fell into six previously described phyla of the bacterial domain, with the majority (56(.)6%) being deep-branching members of the Spirochaetes phylum. Other clones were in the Firmicutes phylum (18(.)5%), the Chloroflexi phylum (16(.)4%), the Bacteroidetes phylum (6(.)3%), the Synergistes genus (11(.)1%) and a lineage that could not be affiliated with existing phyla (11(.)1%). No archaeal clones were found in the clone library. Owing to the phylogenetic novelty of the microbial community with regard to previously cultured microorganisms, no specific microbial component(s) could be hypothetically affiliated with the RD phenotype. The predominance of Spirochaetes in the microbial consortium, the main group revealed by clone library analysis, was confirmed by FISH using a purposely developed probe.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A total of 160 samples of 20 Australian-sourced feed ingredients of plant origin for pigs and poultry was analysed for total phosphorus and phytate-phosphorus contents and endogenous phytase activity. The majority of total P was present as phytate-phosphorus, and these concentrations were significantly correlated in 9 feed ingredients. The endogenous phytase activity in tested feed ingredients was negligible other than for wheat, its by-products and barley. Phytate-phosphorus was determined by a standard 'ferric chloride precipitation' method, which was satisfactory for individual feed ingredients, with the exception of lupins and faba beans. It appears that phytate is more difficult to extract from these two feedstuffs, possibly because of the affinity of phytate for protein. Ferric chloride precipitation methods are not suitable for phytate-phosphorus determinations of complete feed samples containing other sources of phosphorus, which is a distinct limitation. A lesser limitation is that these methods cannot distinguish between the various esters of myo-inositol phosphate present. Given the variation of phytate contents within ingredients, particularly wheat, the desirability of determining dietary substrate levels is emphasised to take full advantage of including exogenous phytases in pig and poultry diets to reduce phosphorus excretion and abate phosphorus pollution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article we present a study of the effects of external and internal mass transfer limitation of oxygen in a nitrifying system. The oxygen uptake rates (OUR) were measured on both a macro-scale with a respirometric reactor using off-gas analysis (Titrimetric and Off-Gas Analysis (TOGA) sensor) and on a micro-scale with microsensors. These two methods provide independent, accurate measurements of the reaction rates and concentration profiles around and in the granules. The TOGA sensor and micro-sensor measurements showed a significant external mass transfer effect at low dissolved oxygen (DO) concentrations in the bulk liquid while it was insignificant at higher DO concentrations. The oxygen distribution with anaerobic or anoxic conditions in the center clearly shows major mass transfer limitation in the aggregate interior. The large drop in DO concentration of 22 - 80% between the bulk liquid and aggregate surface demonstrates that the external mass transfer resistance is also highly important. The maximum OUR even for floccular biomass was only attained at much higher DO concentrations ( approximate to 8 mg/L) than typically used in such systems. For granules, the DO required for maximal activity was estimated to be > 20mg/L, clearly indicating the effects of the major external and internal mass transfer limitations on the overall biomass activity. Smaller aggregates had a larger volumetric OUR indicating that the granules may have a lower activity in the interior part of the aggregate. (C) 2004 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study compares process data with microscopic observations from an anaerobic digestion of organic particles. As the first part of the study, this article presents detailed observations of microbial biofilm architecture and structure in a 1.25-L batch digester where all particles are of an equal age. Microcrystalline cellulose was used as the sole carbon and energy source. The digestions were inoculated with either leachate from a 220-Lanaerobic municipal solid waste digester or strained rumen contents from a fistulated cow. The hydrolysis rate, when normalized by the amount of cellulose remaining in the reactor, was found to reach a constant value 1 day after inoculation with rumen fluid, and 3 days after inoculating with digester leachate. A constant value of a mass specific hydrolysis rate is argued to represent full colonization of the cellulose surface and first-order kinetics only apply after this point. Additionally, the first-order hydrolysis rate constant, once surfaces were saturated with biofilm, was found to be two times higher with a rumen inoculum, compared to a digester leachate inoculum. Images generated by fluorescence in situ hybridization (FISH) probing and confocal laser scanning microscopy show that the microbial communities involved in the anaerobic biodegradation process exist entirely within the biofilm. For the reactor conditions used in these experiments, the predominant methanogens exist in ball-shaped colonies within the biofilm. (C) 2005 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The microbial community composition and activity was investigated in aggregates from a lab-scale bioreactor, in which nitrification, denitrification and phosphorus removal occurred simultaneously. The biomass was highly enriched for polyphosphate accumulating organisms facilitating complete removal of phosphorus from the bulk liquid; however, some inorganic nitrogen still remained at the end of the reactor cycle. This was ascribed to incomplete coupling of nitrification and denitrification causing NO3- accumulation. After 2 h of aeration, denitrification was dependent on the activity of nitrifying bacteria facilitating the formation of anoxic zones in the aggregates; hence, denitrification could not occur without simultaneous nitrification towards the end of the reactor cycle. Nitrous oxide was identified as a product of denitrification, when based on stored PHA as carbon source. This observation is of critical importance to the outlook of applying PHA-driven denitrification in activated sludge processes. (c) 2004 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.