921 resultados para metallic nanoparticle
Resumo:
International audience
Resumo:
We have achieved highly localised control of pattern formation in two dimensional nanoparticle assemblies by direct modification of solvent dewetting dynamics. A striking dependence of nanoparticle organisation on the size of atomic force microscope-generated surface heterogeneities is observed and reproduced in numerical simulations. Nanoscale features induce rupture of the solvent-nanoparticle film, causing the local flow of solvent to carry nanoparticles into confinement. Microscale heterogeneities instead slow the evaporation of the solvent, producing a remarkably abrupt interface between different nanoparticle patterns.
Resumo:
Coarsening is a ubiquitous phenomenon [1-3] that underpins countless processes in nature, including epitaxial growth [1,3,4], the phase separation of alloys, polymers and binary fluids [2], the growth of bubbles in foams5, and pattern formation in biomembranes6. Here we show, in the first real-time experimental study of the evolution of an adsorbed colloidal nanoparticle array, that tapping-mode atomic force microscopy (TM-AFM) can drive the coarsening of Au nanoparticle assemblies on silicon surfaces. Although the growth exponent has a strong dependence on the initial sample morphology, our observations are largely consistent with modified Ostwald ripening processes [7-9]. To date, ripening processes have been exclusively considered to be thermally activated, but we show that nanoparticle assemblies can be mechanically coerced towards equilibrium, representing a new approach to directed coarsening. This strategy enables precise control over the evolution of micro- and nanostructures.
Resumo:
In recent years, the discovery of bulk metallic glasses with exceptional properties has generated much interest. One of their most intriguing features is their capacity for viscous flow above the glass transition temperature. This characteristic allows metallic glasses to be formed like plastics at modest temperatures. However, crystallization of supercooled metallic liquids in the best bulk metallic glass-formers is much more rapid than in most polymers and silicate glass-forming liquids. The short times to crystallization impairs experimentation on and processing of supercooled glass-forming metallic liquids. A technique to rapidly and uniformly heat metallic glasses at rates of 105 to 106 kelvin per second is presented. A capacitive discharge is used to ohmically heat metallic glasses to temperatures in the super cooled liquid region in millisecond time-scales. By heating samples rapidly, the most time-consuming step in experiments on supercooled metallic liquids is reduced orders of magnitude in length. This allows for experimentation on and processing of metallic liquids in temperature ranges that were previously inaccessible because of crystallization.
A variety of forming techniques, including injection molding and forging, were coupled with capacitive discharge heating to produce near net-shaped metallic glass parts. In addition, a new forming technique, which combines a magnetic field with the heating current to produce a forming force, was developed. Viscosities were measured in previously inaccessible temperature ranges using parallel plate rheometry combined with capacitive discharge heating. Lastly, a rapid pulse calorimeter was developed with this technique to investigate the thermophysical behavior of metallic glasses at these rapid heating rates.
Resumo:
Brazil has vast amounts of hydric resources, whose quality has been deteriorating due to pollutant dumping. Household waste disposal is one of the main sources of water pollution, stimulating bacteria proliferation and introducing microorganisms, including those from fecal matter. Conventional water disinfection methods are a solution, but on the downside, they lead to the formation byproducts hazardous to human health. In this study, aiming to develop bactericidal filters for the disinfection of drinking water; silver nanoparticles were deposited on alumina foams through three routes: sputtering DC, dip coating and in situ chemical reduction of silver nitrate. The depositions were characterized through X-ray diffraction, scanning electron microscopy and EDS element mapping. The influence of the depositions on permeability and mechanical properties of the ceramic foams was assessed and, in sequence, a preliminary antibacterial efficiency analysis was carried out. Characterization results indicate that the chemical reduction routes were efficient in depositing homogeneously distributed silver particles and that the concentration of the metallic precursor salt affects size and morphology of the particles. The antibacterial efficiency analysis indicates that the chemical reduction filters have potential for water disinfection
Resumo:
Spatially accelerating beams are non-diffracting beams whose intensity is localized along curvilinear trajectories, also incomplete circular trajectories, before diffraction broadening governs their propagation. In this paper we report on numerical simulations showing the conversion of a high-numerical-aperture focused beam into a nonparaxial shape-preserving accelerating beam having a beam-width near the diffraction limit. Beam shaping is induced near the focal region by a diffractive optical element that consists of a non-planar subwavelength grating enabling a Bessel signature.
Resumo:
The purpose of the present PhD thesis is to investigate the properties of innovative nano- materials with respect to the conversion of renewable energies to electrical and chemical energy. The materials have been synthesized and characterized by means of a wide spectrum of morphological, compositional and photophysical techniques, in order to get an insight into the correlation between the properties of each material and the activity towards different energy conversion applications. Two main topics are addressed: in the first part of the thesis the light harvesting in pyrene functionalized silicon nanocrystals has been discussed, suggesting an original approach to suc- cessfully increase the absorption properties of these nanocrystals. The interaction of these nanocrystals was then studied, in order to give a deeper insight on the charge and energy extraction, preparing the way to implement SiNCs as active material in optoelectronic devices and photovoltaic cells. In addition to this, the luminescence of SiNCs has been exploited to increase the efficiency of conventional photovoltaic cells by means of two innovative architectures. Specifically, SiNCs has been used as luminescent downshifting layer in dye sensitized solar cells, and they were shown to be very promising light emitters in luminescent solar concentrators. The second part of the thesis was concerned on the production of hydrogen by platinum nanoparticles coupled to either electro-active or photo-active materials. Within this context, the electrocatalytic activity of platinum nanoparticles supported on exfoliated graphene has been studied, preparing an high-efficiency catalyst and disclosing the role of the exfoliation technique towards the catalytic activity. Furthermore, platinum nanoparticles have been synthesized within photoactive dendrimers, providing the first proof of concept of a dendrimer-based photocatalytic system for the hydrogen production where both sensitizer and catalyst are anchored to a single scaffold.
Resumo:
Purpose: To evaluate the efficacy and safety of methotrexate (MTX) nanoparticles in pediatric patients with inflammatory bowel disease (IBD). Methods: In this randomized, open-label clinical study, 28 pediatric patients with moderate to severe IBD were randomly assigned to treatment (MTX nanoparticles,15 mg/week) or control (azathioprine, AZA, 2 mg/kg/day) group. Nanoparticles were synthesized by adding calcium chloride to sodium alginate solution containing MTX, and was further treated with poly-L-lysine aqueous solution. The nanoparticles were evaluated for particle size, zeta potential and drug encapsulation efficacy. Erythrocyte sedimentation rate, C-reactive protein, aspartate aminotransferase, alanine transaminase, and disease activity scores were used to assess IBD remission. Results: Nanoparticle size, zeta potential and encapsulation efficacy were 164.4 ± 6.9 nm, -32.6 ± 3.7 mV, and 97.8 ± 4.2 %, respectively. After 12 weeks of therapy, the mean Pediatric Crohn\'s Disease Activity Index (PCDAI) scores for control and treatment groups were 22.3 ± 2.14 and 16.8 ± 1.87, respectively, while mean Pediatric Ulcerative Colitis Activity (PUCAI) Index scores were 24.3 ± 1.47 and 18.7 ± 1.92, respectively. Eight patients in the treatment and five patients in the control group achieved remission. Biochemical parameters varied significantly between the groups. Conclusion: MTX nanoparticles are safe and more effective than standard first-line IBD therapy. However, further studies are required to determine the suitability of the formulation for therapeutic use.
Resumo:
Metallic glasses (MGs) are a relatively new class of materials discovered in 1960 and lauded for its high strengths and superior elastic properties. Three major obstacles prevent their widespread use as engineering materials for nanotechnology and industry: 1) their lack of plasticity mechanisms for deformation beyond the elastic limit, 2) their disordered atomic structure, which prevents effective study of their structure-to-property relationships, and 3) their poor glass forming ability, which limits bulk metallic glasses to sizes on the order of centimeters. We focused on understanding the first two major challenges by observing the mechanical properties of nanoscale metallic glasses in order to gain insight into its atomic-level structure and deformation mechanisms. We found that anomalous stable plastic flow emerges in room-temperature MGs at the nanoscale in wires as little as ~100 nanometers wide regardless of fabrication route (ion-irradiated or not). To circumvent experimental challenges in characterizing the atomic-level structure, extensive molecular dynamics simulations were conducted using approximated (embedded atom method) potentials to probe the underlying processes that give rise to plasticity in nanowires. Simulated results showed that mechanisms of relaxation via the sample free surfaces contribute to tensile ductility in these nanowires. Continuing with characterizing nanoscale properties, we studied the fracture properties of nano-notched MGnanowires and the compressive response of MG nanolattices at cryogenic (~130 K) temperatures. We learned from these experiments that nanowires are sensitive to flaws when the (amorphous) microstructure does not contribute stress concentrations, and that nano-architected structures with MG nanoribbons are brittle at low temperatures except when elastic shell buckling mechanisms dominate at low ribbon thicknesses (~20 nm), which instead gives rise to fully recoverable nanostructures regardless of temperature. Finally, motivated by understanding structure-to-property relationships in MGs, we studied the disordered atomic structure using a combination of in-situ X-ray tomography and X-ray diffraction in a diamond anvil cell and molecular dynamics simulations. Synchrotron X-ray experiments showed the progression of the atomic-level structure (in momentum space) and macroscale volume under increasing hydrostatic pressures. Corresponding simulations provided information on the real space structure, and we found that the samples displayed fractal scaling (rd ∝ V, d < 3) at short length scales (< ~8 Å), and exhibited a crossover to a homogeneous scaling (d = 3) at long length scales. We examined this underlying fractal structure of MGs with parallels to percolation clusters and discuss the implications of this structural analogy to MG properties and the glass transition phenomenon.
Resumo:
Brain is one of the safe sanctuaries for HIV and, in turn, continuously supplies active viruses to the periphery. Additionally, HIV infection in brain results in several mild-to-severe neuro-immunological complications termed neuroAIDS. One-tenth of HIV-infected population is addicted to recreational drugs such as opiates, alcohol, nicotine, marijuana, etc. which share common target-areas in the brain with HIV. Interestingly, intensity of neuropathogenesis is remarkably enhanced due to exposure of recreational drugs during HIV infection. Current treatments to alleviate either the individual or synergistic effects of abusive drugs and HIV on neuronal modulations are less effective at CNS level, basically due to impermeability of therapeutic molecules across blood-brain barrier (BBB). Despite exciting advancement of nanotechnology in drug delivery, existing nanovehicles such as dendrimers, polymers, micelles, etc. suffer from the lack of adequate BBB penetrability before the drugs are engulfed by the reticuloendothelial system cells as well as the uncertainty that if and when the nanocarrier reaches the brain. Therefore, in order to develop a fast, target-specific, safe, and effective approach for brain delivery of anti-addiction, anti-viral and neuroprotective drugs, we exploited the potential of magnetic nanoparticles (MNPs) which, in recent years, has attracted significant importance in biomedical applications. We hypothesize that under the influence of external (non-invasive) magnetic force, MNPs can deliver these drugs across BBB in most effective manner. Accordingly, in this dissertation, I delineated the pharmacokinetics and dynamics of MNPs bound anti-opioid, anti-HIV and neuroprotective drugs for delivery in brain. I have developed a liposome-based novel magnetized nanovehicle which, under the influence of external magnetic forces, can transmigrate and effectively deliver drugs across BBB without compromising its integrity. It is expected that the developed nanoformulations may be of high therapeutic significance for neuroAIDS and for drug addiction as well.
Resumo:
A family of bulk and SBA-15 supported peroxo niobic acid sols were prepared by peptisation of niobic acid precipitates with H2O2 as heterogeneous catalysts for aqueous phase glucose and fructose conversion to 5-hydroxymethylfurfural (5-HMF). Niobic acid nanoparticles possess a high density of Brønsted and Lewis acid sites, conferring good activity towards glucose and fructose conversion, albeit with modest 5-HMF yields under mild reaction conditions (100 °C). Thermally-induced niobia crystallisation suppresses solid acidity and activity. Nanoparticulate niobic acid dispersed over SBA-15 exhibits pure Brønsted acidity and an enhanced Turnover Frequency for fructose dehydration.
Resumo:
Thesis (Master, Chemical Engineering) -- Queen's University, 2016-08-16 04:58:55.749
Resumo:
The electrochemical conversion is a sustainable way for the production of added-value products, operating in mild conditions, using in-situ generated hydrogen/oxygen by water and avoiding the use of high H2/O2 pressures. The aim of this work is to investigate the electrocatalytic conversion of 5-hydroxymetilfurfural (HMF) and D-glucose, in alkaline media, using metallic open-cell foams based-catalysts. The electrochemical hydrogenation of HMF to 2,5-bis(hydroxymethyl)furan (BHMF) was performed using nanostructured Ag, deposited by galvanic displacement (GD) or electrodeposition (ED), on Cu foam, obtaining AgCu bimetallic nanoparticles (ED) or dendrites (GD) which enhanced electroactive surface area, charge and mass transfer, than bare foams. In diluted 0.02M HMF solutions, Ag/Cu samples selectively produce BHMF; the large surface area enhanced the productivity, compared to their 2D counterparts. Furthermore, at more concentrated solutions (0.05 – 0.10M) a gradually decrease of selectivity is observed. The performances of the electrodes is stable during the catalytic tests but a Cu-enrichment of particles occurred. The performances of Ni foam-based catalysts, obtained by calcination of Ni foam or by electrodeposition of Ni-hydroxide/Ni and Ni particle/Ni, were firstly investigated for the selective electrochemical oxidation of D-glucose toward gluconic acid (GO) and glucaric acid (GA). Then, the calcined catalyst was chosen to study the influence of the reaction conditions on the reaction mechanism. The GO and GA selectivities increase with the charge passed, while the formation of by-products from C-C cleavage/retro-aldol process is maximum at low charge. The fructose obtained from glucose isomerization favours the formation of by-products. The best glucose/NaOH ratio is between 0.5 and 0.1: higher values suppress the OER, while lower values favour the formation of low molecular weight products. The increases of the potential enhance the GO selectivity, nevertheless higher GA selectivity is observed at 0.6 – 0.7V vs SCE, confirmed by catalytic test performed in gluconate (30-35% GA selectivity).