964 resultados para mesh: Models, Theoretical
Resumo:
Information about the world is often represented in the brain in the form of topographic maps. A paradigm example is the topographic representation of the visual world in the optic tectum/superior colliculus. This map initially forms during neural development using activity-independent molecular cues, most notably some type of chemospecific matching between molecular gradients in the retina and corresponding gradients in the tectum/superior colliculus. Exactly how this process might work has been studied both experimentally and theoretically for several decades. This review discusses the experimental data briefly, and then in more detail the theoretical models proposed. The principal conclusions are that (1) theoretical models have helped clarify several important ideas in the field, (2) earlier models were often more sophisticated than more recent models, and (3) substantial revisions to current modelling approaches are probably required to account for more than isolated subsets of the experimental data.
Resumo:
Purpose - In many scientific and engineering fields, large-scale heat transfer problems with temperature-dependent pore-fluid densities are commonly encountered. For example, heat transfer from the mantle into the upper crust of the Earth is a typical problem of them. The main purpose of this paper is to develop and present a new combined methodology to solve large-scale heat transfer problems with temperature-dependent pore-fluid densities in the lithosphere and crust scales. Design/methodology/approach - The theoretical approach is used to determine the thickness and the related thermal boundary conditions of the continental crust on the lithospheric scale, so that some important information can be provided accurately for establishing a numerical model of the crustal scale. The numerical approach is then used to simulate the detailed structures and complicated geometries of the continental crust on the crustal scale. The main advantage in using the proposed combination method of the theoretical and numerical approaches is that if the thermal distribution in the crust is of the primary interest, the use of a reasonable numerical model on the crustal scale can result in a significant reduction in computer efforts. Findings - From the ore body formation and mineralization points of view, the present analytical and numerical solutions have demonstrated that the conductive-and-advective lithosphere with variable pore-fluid density is the most favorite lithosphere because it may result in the thinnest lithosphere so that the temperature at the near surface of the crust can be hot enough to generate the shallow ore deposits there. The upward throughflow (i.e. mantle mass flux) can have a significant effect on the thermal structure within the lithosphere. In addition, the emplacement of hot materials from the mantle may further reduce the thickness of the lithosphere. Originality/value - The present analytical solutions can be used to: validate numerical methods for solving large-scale heat transfer problems; provide correct thermal boundary conditions for numerically solving ore body formation and mineralization problems on the crustal scale; and investigate the fundamental issues related to thermal distributions within the lithosphere. The proposed finite element analysis can be effectively used to consider the geometrical and material complexities of large-scale heat transfer problems with temperature-dependent fluid densities.
Resumo:
Quantitatively predicting mass transport rates for chemical mixtures in porous materials is important in applications of materials such as adsorbents, membranes, and catalysts. Because directly assessing mixture transport experimentally is challenging, theoretical models that can predict mixture diffusion coefficients using Only single-component information would have many uses. One such model was proposed by Skoulidas, Sholl, and Krishna (Langmuir, 2003, 19, 7977), and applications of this model to a variety of chemical mixtures in nanoporous materials have yielded promising results. In this paper, the accuracy of this model for predicting mixture diffusion coefficients in materials that exhibit a heterogeneous distribution of local binding energies is examined. To examine this issue, single-component and binary mixture diffusion coefficients are computed using kinetic Monte Carlo for a two-dimensional lattice model over a wide range of lattice occupancies and compositions. The approach suggested by Skoulidas, Sholl, and Krishna is found to be accurate in situations where the spatial distribution of binding site energies is relatively homogeneous, but is considerably less accurate for strongly heterogeneous energy distributions.
Resumo:
Objective: To explore the use of epidemiological modelling for the estimation of health effects of behaviour change interventions, using the example of computer-tailored nutrition education aimed at fruit and vegetable consumption in The Netherlands. Design: The effects of the intervention on changes in consumption were obtained from an earlier evaluation study. The effect on health outcomes was estimated using an epidemiological multi-state life table model. input data for the model consisted of relative risk estimates for cardiovascular disease and cancers, data on disease occurrence and mortality, and survey data on the consumption of fruits and vegetables. Results: if the computer-tailored nutrition education reached the entire adult population and the effects were sustained, it could result in a mortality decrease of 0.4 to 0.7% and save 72 to 115 life-years per 100000 persons aged 25 years or older. Healthy life expectancy is estimated to increase by 32.7 days for men and 25.3 days for women. The true effect is likely to lie between this theoretical maximum and zero effect, depending mostly on durability of behaviour change and reach of the intervention. Conclusion: Epidemiological models can be used to estimate the health impact of health promotion interventions.
Resumo:
The present study addresses the problem of predicting the properties of multicomponent systems from those of corresponding binary systems. Two types of multicomponent polynomial models have been analysed. A probabilistic interpretation of the parameters of the Polynomial model, which explicitly relates them with the Gibbs free energies of the generalised quasichemical reactions, is proposed. The presented treatment provides a theoretical justification for such parameters. A methodology of estimating the ternary interaction parameter from the binary ones is presented. The methodology provides a way in which the power series multicomponent models, where no projection is required, could be incorporated into the Calphad approach.
Resumo:
Most modern models of personality are hierarchical, perhaps as a result of their development by means of exploratory factor analysis. Based on new ideas about the structure of personality and how it divides into biologically based and sociocognitively based components (as proposed by Carver, Cloninger, EUiot and Thrash, and ReveUe), I develop a series of rules that show how scales of personality may be linked from those that are most distal to those which are most proximal. I use SEM to confirm the proposed structure in scales of the Temperament Character Inventory (TCI) and the Eysenck Personality Profiler. Good fit is achieved and all proposed paths are significant. The model is then used to predict work performance, deviance and job satisfacdon.
Resumo:
Totally generalisable theories of firm internationalisation in the post-industrial era of international business, where national barriers are becoming less significant and technology becoming more influential, appear to be illusory. Stepwise or evolutionary models that predict gradual internationalisation are under challenge from empirical evidence of rapid internationalisation such as the phenomenon of the “born global” firm. Similarly, equilibrium models such as the eclectic paradigm have been criticised for being static and unable to account for process and path dependency. In this paper, the information and knowledge assumptions implied in theories of firm internationalisation are outlined and discussed. From this discussion, we suggest that actor-network theory, with its balance between description and explanation, may be a useful theoretical and empirical tool for investigating the complex and heterogeneous process of firm internationalisation whilst creating opportunities for further theory building.
Resumo:
This review attempts to provide an insightful perspective on the role of time within neural network models and the use of neural networks for problems involving time. The most commonly used neural network models are defined and explained giving mention to important technical issues but avoiding great detail. The relationship between recurrent and feedforward networks is emphasised, along with the distinctions in their practical and theoretical abilities. Some practical examples are discussed to illustrate the major issues concerning the application of neural networks to data with various types of temporal structure, and finally some highlights of current research on the more difficult types of problems are presented.
Resumo:
Neural networks have often been motivated by superficial analogy with biological nervous systems. Recently, however, it has become widely recognised that the effective application of neural networks requires instead a deeper understanding of the theoretical foundations of these models. Insight into neural networks comes from a number of fields including statistical pattern recognition, computational learning theory, statistics, information geometry and statistical mechanics. As an illustration of the importance of understanding the theoretical basis for neural network models, we consider their application to the solution of multi-valued inverse problems. We show how a naive application of the standard least-squares approach can lead to very poor results, and how an appreciation of the underlying statistical goals of the modelling process allows the development of a more general and more powerful formalism which can tackle the problem of multi-modality.
Resumo:
This paper examines the strategic implications of resource allocation models (RAMs). Four interrelated aspects of resource allocation are discussed: degree of centralisation, locus of strategic direction, cross-subsidy, and locus of control. The paper begins with a theoretical overview of these concepts, locating the study in the contexts of both strategic management literature and the university. The concepts are then examined empirically, drawing upon a longitudinal study of three UK universities, Warwick, London School of Economics and Political Science (LSE), and Oxford Brookes. Findings suggest that RAMs are historically and culturally situated within the context of each university and this is associated with different patterns of strategic direction and forms of strategic control. As such, the RAM in use may be less a matter of best practice than one of internal fit. The paper concludes with some implications for theory and practice by discussing the potential trajectories of each type of RAM.
Resumo:
A city's branding is investigated using generic product and services branding models. Two generic branding models and tourism segmentation models guide an investigation into city branding 'as it should be' and 'as it is' using Birmingham, England as a case study. The unique characteristics of city brands are identified and Keller's Brand Report Card provides a theoretical framework for building a picture of the brand-building activity taking place in the city. Four themes emerge and are discussed: 1) the impact of a network on brand models developed for organisations; 2) segmentation of brand elements; 3) corporate branding; and 4) the political dimension. A conclusion is that city branding would be more effective if the systems and structures of generic branding models were adopted.
Resumo:
In developed countries travel time savings can account for as much as 80% of the overall benefits arising from transport infrastructure and service improvements. In developing countries they are generally ignored in transport project appraisals, notwithstanding their importance. One of the reasons for ignoring these benefits in the developing countries is that there is insufficient empirical evidence to support the conventional models for valuing travel time where work patterns, particularly of the poor, are diverse and it is difficult to distinguish between work and non-work activities. The exclusion of time saving benefits may lead to a bias against investment decisions that benefit the poor and understate the poverty reduction potential of transport investments in Least Developed Countries (LDCs). This is because the poor undertake most travel and transport by walking and headloading on local roads, tracks and paths and improvements of local infrastructure and services bring large time saving benefits for them through modal shifts. The paper reports on an empirical study to develop a methodology for valuing rural travel time savings in the LDCs. Apart from identifying the theoretical and empirical issues in valuing travel time savings in the LDCs, the paper presents and discusses the results of an analysis of data from Bangladesh. Some of the study findings challenge the conventional wisdom concerning the time saving values. The Bangladesh study suggests that the western concept of dividing travel time savings into working and non-working time savings is broadly valid in the developing country context. The study validates the use of preference methods in valuing non-working time saving values. However, stated preference (SP) method is more appropriate than revealed preference (RP) method.
Resumo:
The modelling of mechanical structures using finite element analysis has become an indispensable stage in the design of new components and products. Once the theoretical design has been optimised a prototype may be constructed and tested. What can the engineer do if the measured and theoretically predicted vibration characteristics of the structure are significantly different? This thesis considers the problems of changing the parameters of the finite element model to improve the correlation between a physical structure and its mathematical model. Two new methods are introduced to perform the systematic parameter updating. The first uses the measured modal model to derive the parameter values with the minimum variance. The user must provide estimates for the variance of the theoretical parameter values and the measured data. Previous authors using similar methods have assumed that the estimated parameters and measured modal properties are statistically independent. This will generally be the case during the first iteration but will not be the case subsequently. The second method updates the parameters directly from the frequency response functions. The order of the finite element model of the structure is reduced as a function of the unknown parameters. A method related to a weighted equation error algorithm is used to update the parameters. After each iteration the weighting changes so that on convergence the output error is minimised. The suggested methods are extensively tested using simulated data. An H frame is then used to demonstrate the algorithms on a physical structure.
Resumo:
We introduce models of heterogeneous systems with finite connectivity defined on random graphs to capture finite-coordination effects on the low-temperature behaviour of finite-dimensional systems. Our models use a description in terms of small deviations of particle coordinates from a set of reference positions, particularly appropriate for the description of low-temperature phenomena. A Born-von Karman-type expansion with random coefficients is used to model effects of frozen heterogeneities. The key quantity appearing in the theoretical description is a full distribution of effective single-site potentials which needs to be determined self-consistently. If microscopic interactions are harmonic, the effective single-site potentials turn out to be harmonic as well, and the distribution of these single-site potentials is equivalent to a distribution of localization lengths used earlier in the description of chemical gels. For structural glasses characterized by frustration and anharmonicities in the microscopic interactions, the distribution of single-site potentials involves anharmonicities of all orders, and both single-well and double-well potentials are observed, the latter with a broad spectrum of barrier heights. The appearance of glassy phases at low temperatures is marked by the appearance of asymmetries in the distribution of single-site potentials, as previously observed for fully connected systems. Double-well potentials with a broad spectrum of barrier heights and asymmetries would give rise to the well-known universal glassy low-temperature anomalies when quantum effects are taken into account. © 2007 IOP Publishing Ltd.