979 resultados para marine resources


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The end consumers in a smart grid context are seen as active players. The distributed generation resources applied in smart home system as a micro and small-scale systems can be wind generation, photovoltaic and combine heat and power facility. The paper addresses the management of domestic consumer resources, i.e. wind generation, solar photovoltaic, combined heat and power, electric vehicle with gridable capability and loads, in a SCADA system with intelligent methodology to support the user decision in real time. The main goal is to obtain the better management of excess wind generation that may arise in consumer’s distributed generation resources. The optimization methodology is performed in a SCADA House Intelligent Management context and the results are analyzed to validate the SCADA system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes an energy resources management methodology based on three distinct time horizons: day-ahead scheduling, hour-ahead scheduling, and real-time scheduling. In each scheduling process it is necessary the update of generation and consumption operation and of the storage and electric vehicles storage status. Besides the new operation condition, it is important more accurate forecast values of wind generation and of consumption using results of in short-term and very short-term methods. A case study considering a distribution network with intensive use of distributed generation and electric vehicles is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concept of demand response has a growing importance in the context of the future power systems. Demand response can be seen as a resource like distributed generation, storage, electric vehicles, etc. All these resources require the existence of an infrastructure able to give players the means to operate and use them in an efficient way. This infrastructure implements in practice the smart grid concept, and should accommodate a large number of diverse types of players in the context of a competitive business environment. In this paper, demand response is optimally scheduled jointly with other resources such as distributed generation units and the energy provided by the electricity market, minimizing the operation costs from the point of view of a virtual power player, who manages these resources and supplies the aggregated consumers. The optimal schedule is obtained using two approaches based on particle swarm optimization (with and without mutation) which are compared with a deterministic approach that is used as a reference methodology. A case study with two scenarios implemented in DemSi, a demand Response simulator developed by the authors, evidences the advantages of the use of the proposed particle swarm approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increasing use of distributed generation units based on renewable energy sources, the consideration of demand-side management as a distributed resource, and the operation in the scope of competitive electricity markets have caused important changes in the way that power systems are operated. The new distributed resources require an entity (player) capable to make them able to participate in electricity markets. This entity has been known as Virtual Power Player (VPP). VPPs need to consider all the business opportunities available to their resources, considering all the relevant players, the market and/or other VPPs to accomplish their goals. This paper presents a methodology that considers all these opportunities to minimize the operation costs of a VPP. The method is applied to a distribution network managed by four independent VPPs with intensive use of distributed resources.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The future scenarios for operation of smart grids are likely to include a large diversity of players, of different types and sizes. With control and decision making being decentralized over the network, intelligence should also be decentralized so that every player is able to play in the market environment. In the new context, aggregator players, enabling medium, small, and even micro size players to act in a competitive environment, will be very relevant. Virtual Power Players (VPP) and single players must optimize their energy resource management in order to accomplish their goals. This is relatively easy to larger players, with financial means to have access to adequate decision support tools, to support decision making concerning their optimal resource schedule. However, the smaller players have difficulties in accessing this kind of tools. So, it is required that these smaller players can be offered alternative methods to support their decisions. This paper presents a methodology, based on Artificial Neural Networks (ANN), intended to support smaller players’ resource scheduling. The used methodology uses a training set that is built using the energy resource scheduling solutions obtained with a reference optimization methodology, a mixed-integer non-linear programming (MINLP) in this case. The trained network is able to achieve good schedule results requiring modest computational means.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Smart grids are envisaged as infrastructures able to accommodate all centralized and distributed energy resources (DER), including intensive use of renewable and distributed generation (DG), storage, demand response (DR), and also electric vehicles (EV), from which plug-in vehicles, i.e. gridable vehicles, are especially relevant. Moreover, smart grids must accommodate a large number of diverse types or players in the context of a competitive business environment. Smart grids should also provide the required means to efficiently manage all these resources what is especially important in order to make the better possible use of renewable based power generation, namely to minimize wind curtailment. An integrated approach, considering all the available energy resources, including demand response and storage, is crucial to attain these goals. This paper proposes a methodology for energy resource management that considers several Virtual Power Players (VPPs) managing a network with high penetration of distributed generation, demand response, storage units and network reconfiguration. The resources are controlled through a flexible SCADA (Supervisory Control And Data Acquisition) system that can be accessed by the evolved entities (VPPs) under contracted use conditions. A case study evidences the advantages of the proposed methodology to support a Virtual Power Player (VPP) managing the energy resources that it can access in an incident situation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A multilevel negotiation mechanism for operating smart grids and negotiating in electricity markets considers the advantages of virtual power player management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intensive use of Distributed Generation (DG) represents a change in the paradigm of power systems operation making small-scale energy generation and storage decision making relevant for the whole system. This paradigm led to the concept of smart grid for which an efficient management, both in technical and economic terms, should be assured. This paper presents a new approach to solve the economic dispatch in smart grids. The proposed methodology for resource management involves two stages. The first one considers fuzzy set theory to define the natural resources range forecast as well as the load forecast. The second stage uses heuristic optimization to determine the economic dispatch considering the generation forecast, storage management and demand response

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Power Systems (PS), have been affected by substantial penetration of Distributed Generation (DG) and the operation in competitive environments. The future PS will have to deal with large-scale integration of DG and other distributed energy resources (DER), such as storage means, and provide to market agents the means to ensure a flexible and secure operation. Virtual power players (VPP) can aggregate a diversity of players, namely generators and consumers, and a diversity of energy resources, including electricity generation based on several technologies, storage and demand response. This paper proposes an artificial neural network (ANN) based methodology to support VPP resource schedule. The trained network is able to achieve good schedule results requiring modest computational means. A real data test case is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The smart grid concept is rapidly evolving in the direction of practical implementations able to bring smart grid advantages into practice. Evolution in legacy equipment and infrastructures is not sufficient to accomplish the smart grid goals as it does not consider the needs of the players operating in a complex environment which is dynamic and competitive in nature. Artificial intelligence based applications can provide solutions to these problems, supporting decentralized intelligence and decision-making. A case study illustrates the importance of Virtual Power Players (VPP) and multi-player negotiation in the context of smart grids. This case study is based on real data and aims at optimizing energy resource management, considering generation, storage and demand response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Energy Resources Management can play a very relevant role in future power systems in SmartGrid context, with high penetration of distributed generation and storage systems. This paper deals with the importance of resources management in incident situation. The system to consider a high penetration of distributed generation, demand response, storage units and network reconfiguration. A case study evidences the advantages of using a flexible SCADA to control the energy resources in incident situation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the energy management of a small power system, the scheduling of the generation units is a crucial problem for which adequate methodologies can maximize the performance of the energy supply. This paper proposes an innovative methodology for distributed energy resources management. The optimal operation of distributed generation, demand response and storage resources is formulated as a mixed-integer linear programming model (MILP) and solved by a deterministic optimization technique CPLEX-based implemented in General Algebraic Modeling Systems (GAMS). The paper deals with a vision for the grids of the future, focusing on conceptual and operational aspects of electrical grids characterized by an intensive penetration of DG, in the scope of competitive environments and using artificial intelligence methodologies to attain the envisaged goals. These concepts are implemented in a computational framework which includes both grid and market simulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Marine cyanobacteria have been considered a rich source of secondary metabolites with potential biotechnological applications, namely in the pharmacological field. Chemically diverse compounds were found to induce cytoxicity, anti-inflammatory and antibacterial activities. The potential of marine cyanobacteria as anticancer agents has however been the most explored and, besides cytotoxicity in tumor cell lines, several compounds have emerged as templates for the development of new anticancer drugs. The mechanisms implicated in the cytotoxicity of marine cyanobacteria compounds in tumor cell lines are still largely overlooked but several studies point to an implication in apoptosis. This association has been related to several apoptotic indicators such as cell cycle arrest, mitochondrial dysfunctions and oxidative damage, alterations in caspase cascade, alterations in specific proteins levels and alterations in the membrane sodium dynamics. In the present paper a compilation of the described marine cyanobacterial compounds with potential anticancer properties is presented and a review on the implication of apoptosis as the mechanism of cell death is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eight marine cyanobacteria strains of the genera Cyanobium, Leptolyngbya, Oscillatoria, Phormidium, and Synechococcus were isolated from rocky beaches along the Atlantic Portuguese central coast and tested for ecotoxicity. Strains were identified by morphological characteristics and by the amplification and sequentiation of the 16S rDNA. Bioactivity of dichloromethane, methanol and aqueous extracts was assessed by the Artemia salina bioassay. Peptide toxin production was screened by matrix assisted laser desorption/ionization time of flight mass spectrometry. Molecular analysis of the genes involved in the production of known cyanotoxins such as microcystins, nodularins and cylindrospermopsin was also performed. Strains were toxic to the brine shrimp A. salina nauplii with aqueous extracts being more toxic than the organic ones. Although mass spectrometry analysis did not reveal the production of microcystins or other known toxic peptides, a positive result for the presence of mcyE gene was found in one Leptolyngbya strain and one Oscillatoria strain. The extensive brine shrimp mortality points to the involvement of other unknown toxins, and the presence of a fragment of genes involved in the cyanotoxin production highlight the potential risk of cyanobacteria occurrence on the Atlantic coast.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aqueous extracts and organic solvent extracts of isolated marine cyanobacteria strains were tested for antimicrobial activity against a fungus, Gram-positive and Gram-negative bacteria and for cytotoxic activity against primary rat hepatocytes and HL-60 cells. Antimicrobial activity was based on the agar diffusion assay. Cytotoxic activity was measured by apoptotic cell death scored by cell surface evaluation and nuclear morphology. A high percentage of apoptotic cells were observed for HL-60 cells when treated with cyanobacterial organic extracts. Slight apoptotic effects were observed in primary rat hepatocytes when exposed to aqueous cyanobacterial extracts. Nine cyanobacteria strains were found to have antibiotic activity against two Gram-positive bacteria, Clavibacter michiganensis subsp. insidiosum and Cellulomonas uda. No inhibitory effects were found against the fungus Candida albicans and Gram-negative bacteria. Marine Synechocystis and Synechococcus extracts induce apoptosis in eukaryotic cells and cause inhibition of Gram-positive bacteria. The different activity in different extracts suggests different compounds with different polarities.