989 resultados para local anesthesia
Resumo:
Characterizing the functional connectivity between neurons is key for understanding brain function. We recorded spikes and local field potentials (LFPs) from multielectrode arrays implanted in monkey visual cortex to test the hypotheses that spikes generated outward-traveling LFP waves and the strength of functional connectivity depended on stimulus contrast, as described recently. These hypotheses were proposed based on the observation that the latency of the peak negativity of the spike-triggered LFP average (STA) increased with distance between the spike and LFP electrodes, and the magnitude of the STA negativity and the distance over which it was observed decreased with increasing stimulus contrast. Detailed analysis of the shape of the STA, however, revealed contributions from two distinct sources-a transient negativity in the LFP locked to the spike (similar to 0 ms) that attenuated rapidly with distance, and a low-frequency rhythm with peak negativity similar to 25 ms after the spike that attenuated slowly with distance. The overall negative peak of the LFP, which combined both these components, shifted from similar to 0 to similar to 25 ms going from electrodes near the spike to electrodes far from the spike, giving an impression of a traveling wave, although the shift was fully explained by changing contributions from the two fixed components. The low-frequency rhythm was attenuated during stimulus presentations, decreasing the overall magnitude of the STA. These results highlight the importance of accounting for the network activity while using STAs to determine functional connectivity.
Resumo:
We address the problem of local-polynomial modeling of smooth time-varying signals with unknown functional form, in the presence of additive noise. The problem formulation is in the time domain and the polynomial coefficients are estimated in the pointwise minimum mean square error (PMMSE) sense. The choice of the window length for local modeling introduces a bias-variance tradeoff, which we solve optimally by using the intersection-of-confidence-intervals (ICI) technique. The combination of the local polynomial model and the ICI technique gives rise to an adaptive signal model equipped with a time-varying PMMSE-optimal window length whose performance is superior to that obtained by using a fixed window length. We also evaluate the sensitivity of the ICI technique with respect to the confidence interval width. Simulation results on electrocardiogram (ECG) signals show that at 0dB signal-to-noise ratio (SNR), one can achieve about 12dB improvement in SNR. Monte-Carlo performance analysis shows that the performance is comparable to the basic wavelet techniques. For 0 dB SNR, the adaptive window technique yields about 2-3dB higher SNR than wavelet regression techniques and for SNRs greater than 12dB, the wavelet techniques yield about 2dB higher SNR.
Resumo:
First systematic spin probe ESR study of water freezing has been conducted using TEMPOL and TEMPO as the probes. The spin probe signature of the water freezing has been described in terms of the collapse of narrow triplet spectrum into a single broad line. This spin probe signature of freezing has been observed at an anomalously low temperature when a milimoler solution of TEMPOL is slowly cooled from room temperature. A systematic observation has revealed a spin probe concentration dependence of these freezing and respective melting points. These results can be explained in terms of localization of spin probe and liquid water,most probably in the interstices of ice grains, in an ice matrix. The lowering of spin probe freezing point, along with the secondary evidences, like spin probe concentration dependence of peak-to-peak width in frozen limit signal, indicates a possible size dependence of these localizations/entrapments with spin probe concentration. A weak concentration dependence of spin probe assisted freezing and melting points, which has been observed for TEMPO in comparison to TEMPOL, indicates different natures of interactions with water of these two probes. This view is also supported by the relaxation behavior of the two probes.
Resumo:
It is important to know and to quantify the liquid holdups both dynamic and static at local levels as it will lead to understand various blast furnace phenomena properly such as slag/metal.gas.solid reactions, gas flow behaviour and interfacial area between the gas/solid/liquid. In the present study, considering the importance of local liquid holdup and non-availability of holdup data in these systems, an attempt has been made to quantify the local holdups in the dropping and around raceway zones in a cold model study using a non-wetting packing for liquid. In order to quantify the liquid holdups at microscopic level, a previously developed technique, X-ray radiography, has been used. It is observed that the liquid flows in preferred paths or channels which carry droplets/rivulets. It has been found that local holdup in some regions of the packed bed is much higher than average at a particular flow rate and this can have important consequences for the correct modelling of such systems.
Resumo:
The local structural information in the near-neighbor region of superionic conducting glass (AgBr)0.4(Ag2O)0.3(GeO2)0.3 has been estimated from the anomalous X-ray scattering (AXS) measurements using Ge and Br K absorption edges. The possible atomic arrangements in the near-neighbor region of this glass were obtained by coupling the results with the least-squares variational method so as to reproduce two differential intensity profiles for Ge and Br as well as the ordinary scattering profile. The coordination number of oxygen around Ge is found to be 3.6 at a distance of 0.176 nm, suggesting the GeO4 tetrahedral unit as the probable structural entity in this glass. Moreover, the coordination number of Ag around Br is estimated as 6.3 at a distance of 0.284 nm, suggesting an arrangement similar to that in crystalline AgBr.
Resumo:
An attempt has been made to describe the glass forming ability (GFA) of liquid alloys, using the concepts of the short range order (SRO) and middle range order (MRO) characterizing the liquid structure.A new approach to obtain good GFA of liquid alloys is based on the following four main factors: (1) formation of new SRO and competitive correlation with two or more kinds of SROs for crystallization, (2) stabilization of dense random packing by interaction between different types of SRO, (3) formation of stable cluster (SC) or middle range order (MRO) by harmonious coupling of SROs, and (4) difference between SRO characterizing the liquid structure and the near-neighbor environment in the corresponding equilibrium crystalline phases. The atomic volume mismatch estimated from the cube of the atomic radius was found to be a close relation with the minimum solute concentration for glass formation. This empirical guideline enables us to provide the optimum solute concentration for good GFA in some ternary alloys. Model structures, denoted by Bernal type and the Chemical Order type, were again tested in the novel description for the glass structure as a function of solute concentration. We illustrated the related energetics of the completion between crystal embryo and different types of SRO. Recent systematic measurements also provide that thermal diffusivity of alloys in the liquid state may be a good indicator of their GFA.
Resumo:
Deviation from local equilibrium between Fe–Ni alloy and (Fe,Ni)TiO3 solid solution in the reaction–diffusion zone of the Fe–NiTiO3 couple at 1273 K is evaluated by comparing the measured compositions in the zone with experimentally determined equilibrium tie-lines. The deviation is quantified by computing the Gibbs energy change for the reaction, Fe + NiTiO3 → FeTiO3 + Ni, from measured compositions in the zone and activity data available in the literature. Except near the extremities of the zone, the computed Gibbs energy change is constant, 8.2 kJ mol−1 higher than the standard Gibbs energy change for the reaction.
Resumo:
Factors influencing the effectiveness of democratic institutions and to that effect processes involved at the local governance level have been the interest in the literature, given the presence of various advocacies and networks that are context-specific. This paper is motivated to understand the adaptability issues related to governance given these complexities through a comparative analysis of diversified regions. We adopted a two-stage clustering along with regression methodology for this purpose. The results show that the formation of advocacies and networks depends on the context and institutional framework. The paper concludes by exploring different strategies and dynamics involved in network governance and insists on the importance of governing the networks for structural reformation through regional policy making.
Resumo:
We provide some conditions for the graph of a Holder-continuous function on (D) over bar, where (D) over bar is a closed disk in C, to be polynomially convex. Almost all sufficient conditions known to date - provided the function (say F) is smooth - arise from versions of the Weierstrass Approximation Theorem on (D) over bar. These conditions often fail to yield any conclusion if rank(R)DF is not maximal on a sufficiently large subset of (D) over bar. We bypass this difficulty by introducing a technique that relies on the interplay of certain plurisubharmonic functions. This technique also allows us to make some observations on the polynomial hull of a graph in C(2) at an isolated complex tangency.
Resumo:
In macroscopic and even microscopic structural elements, surface effects can be neglected and classical theories are sufficient. As the structural size decreases towards the nanoscale regime, the surface-to-bulk energy ratio increases and surface effects must be taken into account. In the present work, the terahertz wave dispersion characteristics of a nanotube are studied with consideration of the surface effects as well as the non-local small scale effects. Non-local elasticity theory is used to derive the general governing differential equation based on equilibrium approach to include those scale effects. Scale and surface property dependent wave characteristic equations are obtained via spectral analysis. For the present study the material properties of an anodic alumina nanotube with crystallographic of < 111 > direction are considered. The present analysis shows that the effect of surface properties (surface integrated residual stress and surface integrated modulus) on the flexural wave characteristics of anodic nanotubes are more significant. It has been found that the flexural wavenumbers with surface effects are high as compared to that without surface effects. It has also been shown that, with consideration of surface effects the flexural wavenumbers are under compressive nature. The effect of the small scale and the size of the nanotube on wave dispersion properties are also captured in the present work. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Laminar separation bubbles are thought to be highly non-parallel, and hence global stability studies start from this premise. However, experimentalists have always realized that the flow is more parallel than is commonly believed, for pressure-gradient-induced bubbles, and this is why linear parallel stability theory has been successful in describing their early stages of transition. The present experimental/numerical study re-examines this important issue and finds that the base flow in such a separation bubble becomes nearly parallel due to a strong-interaction process between the separated boundary layer and the outer potential flow. The so-called dead-air region or the region of constant pressure is a simple consequence of this strong interaction. We use triple-deck theory to qualitatively explain these features. Next, the implications of global analysis for the linear stability of separation bubbles are considered. In particular we show that in the initial portion of the bubble, where the flow is nearly parallel, local stability analysis is sufficient to capture the essential physics. It appears that the real utility of the global analysis is perhaps in the rear portion of the bubble, where the flow is highly non-parallel, and where the secondary/nonlinear instability stages are likely to dominate the dynamics.
Resumo:
In this Letter, we examine magnetization in double- and zero-quantum reservoirs of an ensemble of spin-1/2 nuclei and describe their role in determining the sensitivity of a class of separated local field NMR experiments based on Hartmann-Hahn cross-polarization. We observe that for the liquid crystal system studied, a large dilute spin-polarization, obtained initially by the use of adiabatic cross-polarization, can enhance the sensitivity of the above experiment. The signal enhancement factors, however, are found to vary and depend on the local dynamics. The experimental results have been utilized to obtain the local order-parameters of the system. (C) 2012 Elsevier B. V. All rights reserved.
Resumo:
The constant increase in the number of solved protein structures is of great help in understanding the basic principles behind protein folding and evolution. 3-D structural knowledge is valuable in designing and developing methods for comparison, modelling and prediction of protein structures. These approaches for structure analysis can be directly implicated in studying protein function and for drug design. The backbone of a protein structure favours certain local conformations which include alpha-helices, beta-strands and turns. Libraries of limited number of local conformations (Structural Alphabets) were developed in the past to obtain a useful categorization of backbone conformation. Protein Block (PB) is one such Structural Alphabet that gave a reasonable structure approximation of 0.42 angstrom. In this study, we use PB description of local structures to analyse conformations that are preferred sites for structural variations and insertions, among group of related folds. This knowledge can be utilized in improving tools for structure comparison that work by analysing local structure similarities. Conformational differences between homologous proteins are known to occur often in the regions comprising turns and loops. Interestingly, these differences are found to have specific preferences depending upon the structural classes of proteins. Such class-specific preferences are mainly seen in the all-beta class with changes involving short helical conformations and hairpin turns. A test carried out on a benchmark dataset also indicates that the use of knowledge on the class specific variations can improve the performance of a PB based structure comparison approach. The preference for the indel sites also seem to be confined to a few backbone conformations involving beta-turns and helix C-caps. These are mainly associated with short loops joining the regular secondary structures that mediate a reversal in the chain direction. Rare beta-turns of type I' and II' are also identified as preferred sites for insertions.