903 resultados para linked open data
Resumo:
What potential do artists working with environmental data in public space have for producing new forms of engagement with local environmental conditions? Operating on the edge of heavy bureaucracy, these types of data-driven artistic experiments probe the politics of environmental metrics and explore methods of engaging audiences with issues of environmental health. This discussion considers a small collection of cases studies representative of this growing field of practice. These are works by Natalie Jeremijenko and The Living, Tega Brain and Keith Deverell. The case studies considered are examples of strategic design, works that soften, reveal and potentially shift existing regulations and bureaucratic norms. In doing so they open up new possibilities and questions as to what the smart city is and how it might be realised.
Resumo:
Ascorbate (vitamin C) is an essential antioxidant and enzyme cofactor in both plants and animals. Ascorbate concentration is tightly regulated in plants, partly to respond to stress. Here, we demonstrate that ascorbate concentrations are determined via the posttranscriptional repression of GDP-l-galactose phosphorylase (GGP), a major control enzyme in the ascorbate biosynthesis pathway. This regulation requires a cis-acting upstream open reading frame (uORF) that represses the translation of the downstream GGP open reading frame under high ascorbate concentration. Disruption of this uORF stops the ascorbate feedback regulation of translation and results in increased ascorbate concentrations in leaves. The uORF is predicted to initiate at a noncanonical codon (ACG rather than AUG) and encode a 60- to 65-residue peptide. Analysis of ribosome protection data from Arabidopsis thaliana showed colocation of high levels of ribosomes with both the uORF and the main coding sequence of GGP. Together, our data indicate that the noncanonical uORF is translated and encodes a peptide that functions in the ascorbate inhibition of translation. This posttranslational regulation of ascorbate is likely an ancient mechanism of control as the uORF is conserved in GGP genes from mosses to angiosperms.
Resumo:
Developing and maintaining a successful institutional repository for research publications requires a considerable investment by the institution. Most of the money is spent on developing the skill-sets of existing staff or hiring new staff with the necessary skills. The return on this investment can be magnified by using this valuable infrastructure to curate collections of other materials such as learning objects, student work, conference proceedings and institutional or local community heritage materials. When Queensland University of Technology (QUT) implemented its repository for research publications (QUT ePrints) over 11 years ago, it was one of the first institutional repositories to be established in Australia. Currently, the repository holds over 29,000 open access research publications and the cumulative total number of full-text downloads for these document now exceeds 16 million. The full-text deposit rate for recently-published peer reviewed papers (currently over 74%) shows how well the repository has been embraced by QUT researchers. The success of QUT ePrints has resulted in requests to accommodate a plethora of materials which are ‘out of scope’ for this repository. QUT Library saw this as an opportunity to use its repository infrastructure (software, technical know-how and policies) to develop and implement a metadata repository for its research datasets (QUT Research Data Finder), a repository for research-related software (QUT Software Finder) and to curate a number of digital collections of institutional and local community heritage materials (QUT Digital Collections). This poster describes the repositories and digital collections curated by QUT Library and outlines the value delivered to the institution, and the wider community, by these initiatives.
Resumo:
Background The EphB4 receptor tyrosine kinase is overexpressed in many cancers including prostate cancer. The molecular mechanisms by which this ephrin receptor influences cancer progression are complex as there are tumor-promoting ligand-independent mechanisms in place as well as ligand-dependent tumor suppressive pathways. Methods We employed transient knockdown of EPHB4 in prostate cancer cells, coupled with gene microarray analysis, to identify genes that were regulated by EPHB4 and may represent linked tumor-promoting factors. We validated target genes using qRT-PCR and employed functional assays to determine their role in prostate cancer migration and invasion. Results We discovered that over 500 genes were deregulated upon EPHB4 siRNA knockdown, with integrin β8 (ITGB8) being the top hit (29-fold down-regulated compared to negative non-silencing siRNA). Gene ontology analysis found that the process of cell adhesion was highly deregulated and two other integrin genes, ITGA3 and ITGA10, were also differentially expressed. In parallel, we also discovered that over-expression of EPHB4 led to a concomitant increase in ITGB8 expression. In silico analysis of a prostate cancer progression microarray publically available in the Oncomine database showed that both EPHB4 and ITGB8 are highly expressed in prostatic intraepithelial neoplasia, the precursor to prostate cancer. Knockdown of ITGB8 in PC-3 and 22Rv1 prostate cancer cells in vitro resulted in significant reduction of cell migration and invasion. Conclusions These results reveal that EphB4 regulates integrin β8 expression and that integrin β8 plays a hitherto unrecognized role in the motility of prostate cancer cells and thus targeting integrin β8 may be a new treatment strategy for prostate cancer.
Resumo:
Objectives Demonstrate the application of decision trees – classification and regression trees (CARTs), and their cousins, boosted regression trees (BRTs) – to understand structure in missing data. Setting Data taken from employees at three different industry sites in Australia. Participants 7915 observations were included. Materials and Methods The approach was evaluated using an occupational health dataset comprising results of questionnaires, medical tests, and environmental monitoring. Statistical methods included standard statistical tests and the ‘rpart’ and ‘gbm’ packages for CART and BRT analyses, respectively, from the statistical software ‘R’. A simulation study was conducted to explore the capability of decision tree models in describing data with missingness artificially introduced. Results CART and BRT models were effective in highlighting a missingness structure in the data, related to the Type of data (medical or environmental), the site in which it was collected, the number of visits and the presence of extreme values. The simulation study revealed that CART models were able to identify variables and values responsible for inducing missingness. There was greater variation in variable importance for unstructured compared to structured missingness. Discussion Both CART and BRT models were effective in describing structural missingness in data. CART models may be preferred over BRT models for exploratory analysis of missing data, and selecting variables important for predicting missingness. BRT models can show how values of other variables influence missingness, which may prove useful for researchers. Conclusion Researchers are encouraged to use CART and BRT models to explore and understand missing data.
Resumo:
This work examined a new method of detecting small water filled cracks in underground insulation ('water trees') using data from commecially available non-destructive testing equipment. A testing facility was constructed and a computer simulation of the insulation designed in order to test the proposed ageing factor - the degree of non-linearity. This was a large industry-backed project involving an ARC linkage grant, Ergon Energy and the University of Queensland, as well as the Queensland University of Technology.
Resumo:
The 3D Water Chemistry Atlas is an intuitive, open source, Web-based system that enables the three-dimensional (3D) sub-surface visualization of ground water monitoring data, overlaid on the local geological model (formation and aquifer strata). This paper firstly describes the results of evaluating existing virtual globe technologies, which led to the decision to use the Cesium open source WebGL Virtual Globe and Map Engine as the underlying platform. Next it describes the backend database and search, filtering, browse and analysis tools that were developed to enable users to interactively explore the groundwater monitoring data and interpret it spatially and temporally relative to the local geological formations and aquifers via the Cesium interface. The result is an integrated 3D visualization system that enables environmental managers and regulators to assess groundwater conditions, identify inconsistencies in the data, manage impacts and risks and make more informed decisions about coal seam gas extraction, waste water extraction, and water reuse.
Resumo:
Blasting is an integral part of large-scale open cut mining that often occurs in close proximity to population centers and often results in the emission of particulate material and gases potentially hazardous to health. Current air quality monitoring methods rely on limited numbers of fixed sampling locations to validate a complex fluid environment and collect sufficient data to confirm model effectiveness. This paper describes the development of a methodology to address the need of a more precise approach that is capable of characterizing blasting plumes in near-real time. The integration of the system required the modification and integration of an opto-electrical dust sensor, SHARP GP2Y10, into a small fixed-wing and multi-rotor copter, resulting in the collection of data streamed during flight. The paper also describes the calibration of the optical sensor with an industry grade dust-monitoring device, Dusttrak 8520, demonstrating a high correlation between them, with correlation coefficients (R2) greater than 0.9. The laboratory and field tests demonstrate the feasibility of coupling the sensor with the UAVs. However, further work must be done in the areas of sensor selection and calibration as well as flight planning.
Resumo:
National pride is both an important and understudied topic with respect to economic behaviour, hence this thesis investigates whether: 1) there is a "light" side of national pride through increased compliance, and a "dark" side linked to exclusion; 2) successful priming of national pride is linked to increased tax compliance; and 3) East German post-reunification outmigration is related to loyalty. The project comprises three related empirical studies, analysing evidence from a large, aggregated, international survey dataset; a tax compliance laboratory experiment combining psychological priming with measurement of heart rate variability; and data collected after the fall of the Berlin Wall (a situation approximating a natural experiment).
Resumo:
This study presents a comprehensive mathematical model for open pit mine block sequencing problem which considers technical aspects of real-life mine operations. As the open pit block sequencing problem is an NP-hard, state-of-the-art heuristics algorithms, including constructive heuristic, local search, simulated annealing, and tabu search are developed and coded using MATLAB programming language. Computational experiments show that the proposed algorithms are satisfactory to solve industrial-scale instances. Numerical investigation and sensitivity analysis based on real-world data are also conducted to provide insightful and quantitative recommendations for mine schedulers and planners.
Resumo:
Background: Appetitive traits and food preferences are key determinants of children’s eating patterns but it is unclear how these behaviours relate to one another. This study explores relationships between appetitive traits and preferences for fruits and vegetables, and energy dense, nutrient poor (noncore) foods in two distinct samples of Australian and British preschool children. Methods: This study reports secondary analyses of data from families participating in the British GEMINI cohort study (n=1044) and the control arm of the Australian NOURISH RCT (n=167). Food preferences were assessed by parent-completed questionnaire when children were aged 3-4 years and grouped into three categories; vegetables, fruits and noncore foods. Appetitive traits; enjoyment of food, food responsiveness, satiety responsiveness, slowness in eating, and food fussiness were measured using the Children’s Eating Behaviour Questionnaire when children were 16 months (GEMINI) or 3-4 years (NOURISH). Relationships between appetitive traits and food preferences were explored using adjusted linear regression analyses that controlled for demographic and anthropometric covariates. Results: Vegetable liking was positively associated with enjoyment of food (GEMINI; β=0.20 ± 0.03, p<0.001, NOURISH; β=0.43 ± 0.07, p<0.001) and negatively related to satiety responsiveness (GEMINI; β=-0.19 ± 0.03, p<0.001, NOURISH; β=-0.34 ± 0.08, p<0.001), slowness in eating (GEMINI; β=-0.10 ± 0.03, p=0.002, NOURISH; β=-0.30 ± 0.08, p<0.001) and food fussiness (GEMINI; β=-0.30 ± 0.03, p<0.001, NOURISH; β=-0.60 ± 0.06, p<0.001). Fruit liking was positively associated with enjoyment of food (GEMINI; β=0.18 ± 0.03, p<0.001, NOURISH; β=0.36 ± 0.08, p<0.001), and negatively associated with satiety responsiveness (GEMINI; β=-0.13 ± 0.03, p<0.001, NOURISH; β=-0.24 ± 0.08, p=0.003), food fussiness (GEMINI; β=-0.26 ± 0.03, p<0.001, NOURISH; β=-0.51 ± 0.07, p<0.001) and slowness in eating (GEMINI only; β=-0.09 ± 0.03, p=0.005). Food responsiveness was unrelated to liking for fruits or vegetables in either sample but was positively associated with noncore food preference (GEMINI; β=0.10 ± 0.03, p=0.001, NOURISH; β=0.21 ± 0.08, p=0.010). Conclusion: Appetitive traits linked with lower obesity risk were related to lower liking for fruits and vegetables, while food responsiveness, a trait linked with greater risk of overweight, was uniquely associated with higher liking for noncore foods.
Resumo:
Though difficult, the study of gene-environment interactions in multifactorial diseases is crucial for interpreting the relevance of non-heritable factors and prevents from overlooking genetic associations with small but measurable effects. We propose a "candidate interactome" (i.e. a group of genes whose products are known to physically interact with environmental factors that may be relevant for disease pathogenesis) analysis of genome-wide association data in multiple sclerosis. We looked for statistical enrichment of associations among interactomes that, at the current state of knowledge, may be representative of gene-environment interactions of potential, uncertain or unlikely relevance for multiple sclerosis pathogenesis: Epstein-Barr virus, human immunodeficiency virus, hepatitis B virus, hepatitis C virus, cytomegalovirus, HHV8-Kaposi sarcoma, H1N1-influenza, JC virus, human innate immunity interactome for type I interferon, autoimmune regulator, vitamin D receptor, aryl hydrocarbon receptor and a panel of proteins targeted by 70 innate immune-modulating viral open reading frames from 30 viral species. Interactomes were either obtained from the literature or were manually curated. The P values of all single nucleotide polymorphism mapping to a given interactome were obtained from the last genome-wide association study of the International Multiple Sclerosis Genetics Consortium & the Wellcome Trust Case Control Consortium, 2. The interaction between genotype and Epstein Barr virus emerges as relevant for multiple sclerosis etiology. However, in line with recent data on the coexistence of common and unique strategies used by viruses to perturb the human molecular system, also other viruses have a similar potential, though probably less relevant in epidemiological terms. © 2013 Mechelli et al.
Resumo:
This paper proposes a new multi-resource multi-stage mine production timetabling problem for optimising the open-pit drilling, blasting and excavating operations under equipment capacity constraints. The flow process is analysed based on the real-life data from an Australian iron ore mine site. The objective of the model is to maximise the throughput and minimise the total idle times of equipment at each stage. The following comprehensive mining attributes and constraints are considered: types of equipment; operating capacities of equipment; ready times of equipment; speeds of equipment; block-sequence-dependent movement times; equipment-assignment-dependent operational times; etc. The model also provides the availability and usage of equipment units at multiple operational stages such as drilling, blasting and excavating stages. The problem is formulated by mixed integer programming and solved by ILOG-CPLEX optimiser. The proposed model is validated with extensive computational experiments to improve mine production efficiency at the operational level.
Resumo:
Big Datasets are endemic, but they are often notoriously difficult to analyse because of their size, heterogeneity, history and quality. The purpose of this paper is to open a discourse on the use of modern experimental design methods to analyse Big Data in order to answer particular questions of interest. By appealing to a range of examples, it is suggested that this perspective on Big Data modelling and analysis has wide generality and advantageous inferential and computational properties. In particular, the principled experimental design approach is shown to provide a flexible framework for analysis that, for certain classes of objectives and utility functions, delivers near equivalent answers compared with analyses of the full dataset under a controlled error rate. It can also provide a formalised method for iterative parameter estimation, model checking, identification of data gaps and evaluation of data quality. Finally, it has the potential to add value to other Big Data sampling algorithms, in particular divide-and-conquer strategies, by determining efficient sub-samples.
Resumo:
In this paper we explore how small and medium-sized enterprises (SMEs) engage in external knowledge sourcing, a form of inbound open innovation. We draw upon a sample of 1,411 SMEs and empirically conceptualize a typology of strategic types of external knowledge sourcing, namely minimal, supply-chain, technology-oriented, application-oriented, and full-scope sourcing. Each strategy reflects the nature of external interactions and is linked to a distinct mixture of four internal practices for managing innovation. Both full-scope and application-oriented sourcing offer performance benefits and are associated with a stronger focus on managing innovation. However, they differ in their managerial focus on strategic and operational aspects.