938 resultados para linear-zigzag stuctural instability
Resumo:
We propose an iterative procedure to minimize the sum of squares function which avoids the nonlinear nature of estimating the first order moving average parameter and provides a closed form of the estimator. The asymptotic properties of the method are discussed and the consistency of the linear least squares estimator is proved for the invertible case. We perform various Monte Carlo experiments in order to compare the sample properties of the linear least squares estimator with its nonlinear counterpart for the conditional and unconditional cases. Some examples are also discussed
Resumo:
[cat] En aquest treball extenem les reformes lineals introduïdes per Pfähler (1984) al cas d’impostos duals. Estudiem l’efecte relatiu que els retalls lineals duals d’un impost dual tenen sobre la distribució de la desigualtat -es pot fer un estudi simètric per al cas d’augments d’impostos-. Tambe introduïm mesures del grau de progressivitat d’impostos duals i mostrem que estan connectades amb el criteri de dominació de Lorenz. Addicionalment, estudiem l’elasticitat de la càrrega fiscal de cadascuna de les reformes proposades. Finalment, gràcies a un model de microsimulació i una gran base de dades que conté informació sobre l’IRPF espanyol de l’any 2004, 1) comparem l’efecte que diferents reformes tindrien sobre l’impost dual espanyol i 2) estudiem quina redistribució de la riquesa va suposar la reforma dual de l’IRPF (Llei ’35/2006’) respecte l’anterior impost.
Resumo:
Linear IgA bullous dermatosis (LABD) is an autoimmune disease, characterized by linear deposition of IgA along the basement membrane zone. Drug-induced LABD is rare but increasing in frequency. A new case of drug-induced LABD associated with the administration of furosemide is described.
Resumo:
A calculation of passage-time statistics is reported for the laser switch-on problem, under the influence of colored noise, when the net gain is continuously swept from below to above threshold. Cases of fast and slow sweeping are considered. In the weak-noise limit, asymptotic results are given for small and large correlation times of the noise. The mean first passage time increases with the correlation time of the noise. This effect is more important for fast sweeping than for slow sweeping.
Resumo:
The propagation of a pulse in a nonlinear array of oscillators is influenced by the nature of the array and by its coupling to a thermal environment. For example, in some arrays a pulse can be speeded up while in others a pulse can be slowed down by raising the temperature. We begin by showing that an energy pulse (one dimension) or energy front (two dimensions) travels more rapidly and remains more localized over greater distances in an isolated array (microcanonical) of hard springs than in a harmonic array or in a soft-springed array. Increasing the pulse amplitude causes it to speed up in a hard chain, leaves the pulse speed unchanged in a harmonic system, and slows down the pulse in a soft chain. Connection of each site to a thermal environment (canonical) affects these results very differently in each type of array. In a hard chain the dissipative forces slow down the pulse while raising the temperature speeds it up. In a soft chain the opposite occurs: the dissipative forces actually speed up the pulse, while raising the temperature slows it down. In a harmonic chain neither dissipation nor temperature changes affect the pulse speed. These and other results are explained on the basis of the frequency vs energy relations in the various arrays
Resumo:
In this article we report our systematic studies of the dependence on the sample thickness of the onset parameters of the instability of the nematic-isotropic interface during directional growth and melting, in homeotropic or planar anchoring.
Resumo:
Interfacial hydrodynamic instabilities arise in a range of chemical systems. One mechanism for instability is the occurrence of unstable density gradients due to the accumulation of reaction products. In this paper we conduct two-dimensional nonlinear numerical simulations for a member of this class of system: the methylene-blue¿glucose reaction. The result of these reactions is the oxidation of glucose to a relatively, but marginally, dense product, gluconic acid, that accumulates at oxygen permeable interfaces, such as the surface open to the atmosphere. The reaction is catalyzed by methylene-blue. We show that simulations help to disassemble the mechanisms responsible for the onset of instability and evolution of patterns, and we demonstrate that some of the results are remarkably consistent with experiments. We probe the impact of the upper oxygen boundary condition, for fixed flux, fixed concentration, or mixed boundary conditions, and find significant qualitative differences in solution behavior; structures either attract or repel one another depending on the boundary condition imposed. We suggest that measurement of the form of the boundary condition is possible via observation of oxygen penetration, and improved product yields may be obtained via proper control of boundary conditions in an engineering setting. We also investigate the dependence on parameters such as the Rayleigh number and depth. Finally, we find that pseudo-steady linear and weakly nonlinear techniques described elsewhere are useful tools for predicting the behavior of instabilities beyond their formal range of validity, as good agreement is obtained with the simulations.
Resumo:
Brain fluctuations at rest are not random but are structured in spatial patterns of correlated activity across different brain areas. The question of how resting-state functional connectivity (FC) emerges from the brain's anatomical connections has motivated several experimental and computational studies to understand structure-function relationships. However, the mechanistic origin of resting state is obscured by large-scale models' complexity, and a close structure-function relation is still an open problem. Thus, a realistic but simple enough description of relevant brain dynamics is needed. Here, we derived a dynamic mean field model that consistently summarizes the realistic dynamics of a detailed spiking and conductance-based synaptic large-scale network, in which connectivity is constrained by diffusion imaging data from human subjects. The dynamic mean field approximates the ensemble dynamics, whose temporal evolution is dominated by the longest time scale of the system. With this reduction, we demonstrated that FC emerges as structured linear fluctuations around a stable low firing activity state close to destabilization. Moreover, the model can be further and crucially simplified into a set of motion equations for statistical moments, providing a direct analytical link between anatomical structure, neural network dynamics, and FC. Our study suggests that FC arises from noise propagation and dynamical slowing down of fluctuations in an anatomically constrained dynamical system. Altogether, the reduction from spiking models to statistical moments presented here provides a new framework to explicitly understand the building up of FC through neuronal dynamics underpinned by anatomical connections and to drive hypotheses in task-evoked studies and for clinical applications.
Resumo:
We showed earlier how to predict the writhe of any rational knot or link in its ideal geometric configuration, or equivalently the average of the 3D writhe over statistical ensembles of random configurations of a given knot or link (Cerf and Stasiak 2000 Proc. Natl Acad. Sci. USA 97 3795). There is no general relation between the minimal crossing number of a knot and the writhe of its ideal geometric configuration. However, within individual families of knots linear relations between minimal crossing number and writhe were observed (Katritch et al 1996 Nature 384 142). Here we present a method that allows us to express the writhe as a linear function of the minimal crossing number within Conway families of knots and links in their ideal configuration. The slope of the lines and the shift between any two lines with the same
Resumo:
Molecular and genetic investigations in endometrial carcinogenesis may have prognostic and therapeutic implications. We studied the expression of EGFR, c-Met, PTEN and the mTOR signalling pathway (phospho-AKT/phospho-mTOR/phospho-RPS6) in 69 consecutive tumours and 16 tissue microarrays. We also analysed PIK3CA, K-Ras mutations and microsatellite instability (MSI). We distinguished two groups: group 1 (grade 1 and 2 endometrioid cancers) and group 2 (grade 3 endometrioid and type II clear and serous cell cancers). We hypothesised that these histological groups might have different features. We found that a) survival was higher in group 1 with less aggressive tumours (P⟨0.03); b) EGFR (P=0.01), PTEN and the AKT/mTOR/RPS6 signalling pathway were increased in group 1 versus group 2 (P=0.05 for phospho-mTOR); c) conversely, c-Met was higher (P⟨0.03) in group 2 than in group 1; d) In group 1, EGFR was correlated with c-Met, phospho-mTOR, phospho-RPS6 and the global activity of the phospho-AKT/phospho-mTOR/phospho-RPS6 pathway. In group 2, EGFR was correlated only with the phospho-AKT/phospho-mTOR/phospho-RPS6 pathway, whereas c-Met was correlated with PTEN; e) survival was higher for tumours with more than 50% PTEN-positive cells; f) K-RAS and PIK3CA mutations occurred in 10-12% of the available tumours and MSI in 40.4%, with a loss of MLH1 and PMS2 expression. Our results for endometrial cancers provide the first evidence for a difference in status between groups 1 and 2. The patients may benefit from different targeted treatments, anti-EGFR agents and rapamycin derivatives (anti-mTOR) for group 1 and an anti c-MET/ligand complex for group 2.
Resumo:
We present here a nonbiased probabilistic method that allows us to consistently analyze knottedness of linear random walks with up to several hundred noncorrelated steps. The method consists of analyzing the spectrum of knots formed by multiple closures of the same open walk through random points on a sphere enclosing the walk. Knottedness of individual "frozen" configurations of linear chains is therefore defined by a characteristic spectrum of realizable knots. We show that in the great majority of cases this method clearly defines the dominant knot type of a walk, i.e., the strongest component of the spectrum. In such cases, direct end-to-end closure creates a knot that usually coincides with the knot type that dominates the random closure spectrum. Interestingly, in a very small proportion of linear random walks, the knot type is not clearly defined. Such walks can be considered as residing in a border zone of the configuration space of two or more knot types. We also characterize the scaling behavior of linear random knots.
Resumo:
This article describes a method for determining the polydispersity index Ip2=Mz/Mw of the molecular weight distribution (MWD) of linear polymeric materials from linear viscoelastic data. The method uses the Mellin transform of the relaxation modulus of a simple molecular rheological model. One of the main features of this technique is that it enables interesting MWD information to be obtained directly from dynamic shear experiments. It is not necessary to achieve the relaxation spectrum, so the ill-posed problem is avoided. Furthermore, a determinate shape of the continuous MWD does not have to be assumed in order to obtain the polydispersity index. The technique has been developed to deal with entangled linear polymers, whatever the form of the MWD is. The rheological information required to obtain the polydispersity index is the storage G′(ω) and loss G″(ω) moduli, extending from the terminal zone to the plateau region. The method provides a good agreement between the proposed theoretical approach and the experimental polydispersity indices of several linear polymers for a wide range of average molecular weights and polydispersity indices. It is also applicable to binary blends.