890 resultados para laboratory angle
Resumo:
The US Highway 6 Bridge over Keg Creek outside of Council Bluffs, Iowa is a demonstration bridge site chosen to put into practice newly-developed Accelerated Bridge Construction (ABC) concepts. One of these new concepts is the use of prefabricated high performance concrete (HPC) bridge elements that are connected, in place, utilizing advanced material closure-pours and quick-to-install connection details. The Keg Creek Bridge is the first bridge in the US to utilize moment-resisting ultra-high performance concrete (UHPC) joints in negative moment regions over piers. Through laboratory and live load field testing, performance of these transverse joints as well as global bridge behavior is quantified and examined. The effectiveness of the structural performance of the bridge is evaluated to provide guidance for future designs of similar bridges throughout the US.
Resumo:
The Iowa State University (ISU) Bridge Engineering Center (BEC) performed full-scale laboratory testing of the proposed paving notch replacement system. The objective of the testing program was to verify the structural capacity of the proposed precast paving notch system and to investigate the feasibility of the proposed solution. This report describes the laboratory testing procedure and discusses its results
Resumo:
Ce travail de recherche dresse un panorama de l'état du développement des pratiques d'agriculture urbaine en Suisse et analyse le potentiel que celles-ci pourraient y développer, compte tenu des particularités du contexte national. La démarche adoptée suit une logique allant du général au particulier, de la théorie à la pratique, du descriptif vers l'analytique. Dans un premier temps, l'agriculture urbaine est abordée sous un angle conceptuel, comprenant un retour historique sur la relation ville-campagne et sur l'apparition récente du terme d'agriculture urbaine, un tour d'horizon de la littérature sur le sujet, une revue de ses diverses approches scientifiques et la circonscription des enjeux de sa définition. Dans un deuxième temps, l'agriculture urbaine est envisagée sous sa forme pratique, en Suisse comme à l'étranger. En ressort un inventaire étendu de ses différents types de mises en application, auquel correspond un panel d'atouts identifiés selon les trois versants du développement durable : social, écologique et économique. En troisième lieu les spécificités du contexte helvétique sont étudiées afin de comprendre quel est le cadre dans lequel le potentiel de l'agriculture urbaine pourrait se développer. Finalement, ce sont deux cas concrets d'agriculture urbaine qui sont analysés et évalués dans les détails, selon l'approche dite des régimes institutionnels des ressources naturelles (RIRN): le « plantage » lausannois du quartier de la Bourdonnette et le Stadiongarten dans le quartier Kreis 5 à Zurich. Au fil de cette recherche, il apparaît que l'agriculture urbaine révèle toute une série d'avantages en termes de développement durable, alors même que les villes suisses sont unanimement reconnues comme présentant un déficit dans ce domaine. De même, malgré les bienfaits importants que présentent ses diverses pratiques, l'agriculture urbaine reste encore très peu répandue en Suisse, le concept lui-même n'apparaissant que très rarement dans le discours des pouvoirs publics. Le principal frein à l'agriculture en ville est identifié comme étant le manque d'espace disponible dans les agglomérations, contrainte pourtant largement surmontable en y regardant de plus près. De par sa configuration topographique, le territoire suisse est particulièrement sujet à une étroite proximité entre espaces urbains et étendues agricoles, accroissant de ce fait la problématique de l'étalement urbain et du mitage du paysage. Parmi les enjeux de la lutte contre ces phénomènes concomitants, l'agriculture urbaine aurait un rôle important à jouer. En conclusion, une série de recommandations sont proposées afin que les projets d'agriculture urbaine puissent se développer et perdurer en Suisse. Abstract : This research paper provides an overview of the state of development of urban agriculture practices in Switzerland. It analyzes their potential of expansion while taking into account the particularities of the national context. The method follows a general to particular, theory to practice and descriptive to analytical reasoning. Firstly, urban agriculture is approached through a conceptual view, including a historical overview of the relationship between town and country and of the recent appearance of the term "urban agriculture". An outline of the literature on the subject, an examination of its various scientific approaches and riding issues of its definition are elaborated as well. In a second step, urban agriculture is considered in its practical form, both in Switzerland and abroad. From this we created an extensive inventory of various types of implementations which corresponds to a panel of assets identified according to the three aspects of sustainable development: social, ecology and economics. Thirdly the specificities of Swiss context are studied in order to understand the frame in which the potential of urban agriculture could be developed. Finally, two case studies of urban agriculture are analyzed and evaluated in detail, according to the so-called institutional regimes of natural resources (RIRN) approach: the "plantage" of the Bourdonnette neighborhood in Lausanne and the "Stadiongarten" in the Kreis 5 neighborhood in Zurich. Throughout this research, urban agriculture reveals a number of advantages in terms of sustainable development, even though the Swiss cities are unanimously recognized as having a deficit in this area. As well, despite the significant benefits that are its various practices, urban agriculture is still very uncommon in Switzerland, the concept itself appearing only rarely in public debates. The main obstacle to city agriculture is identified as the lack of available space in urban areas, however this constraint can easily be surpassed. By its topographical configuration, Switzerland is particularly prone to a close proximity between urban and agricultural spaces, thereby increasing the problems of urban sprawl. Among the stakes in the struggle against these interrelated phenomena, urban agriculture could play an important role. In conclusion, a series of recommendations are proposed so that urban agriculture projects can grow and persist in Switzerland.
Resumo:
X-ray imaging with grating interferometry has previously been regarded as a technique providing information only in direct space. It delivers absorption, phase, and dark-field contrast, which can be viewed as parameters of the underlying but unresolved scattering distribution. Here, we present a method that provides the ultrasmall-angle x-ray scattering distribution and, thus, allows simultaneous access to direct and reciprocal space information.
Resumo:
Usually the measurement of multi-segment foot and ankle complex kinematics is done with stationary motion capture devices which are limited to use in a gait laboratory. This study aimed to propose and validate a wearable system to measure the foot and ankle complex joint angles during gait in daily conditions, and then to investigate its suitability for clinical evaluations. The foot and ankle complex consisted of four segments (shank, hindfoot, forefoot, and toes), with an inertial measurement unit (3D gyroscopes and 3D accelerometers) attached to each segment. The angles between the four segments were calculated in the sagittal, coronal, and transverse planes using a new algorithm combining strap-down integration and detection of low-acceleration instants. To validate the joint angles measured by the wearable system, three subjects walked on a treadmill for five minutes at three different speeds. A camera-based stationary system that used a cluster of markers on each segment was used as a reference. To test the suitability of the system for clinical evaluation, the joint angle ranges were compared between a group of 10 healthy subjects and a group of 12 patients with ankle osteoarthritis, during two 50-m walking trials where the wearable system was attached to each subject. On average, over all joints and walking speeds, the RMS differences and correlation coefficients between the angular curves obtained using the wearable system and the stationary system were 1 deg and 0.93, respectively. Moreover, this system was able to detect significant alteration of foot and ankle function between the group of patients with ankle osteoarthritis and the group of healthy subjects. In conclusion, this wearable system was accurate and suitable for clinical evaluation when used to measure the multi-segment foot and ankle complex kinematics during long-distance walks in daily life conditions.
Resumo:
This report describes a laboratory evaluation of three asphaltic concrete, plant produced mixtures containing Asphadur. The mixtures represent a type A asphaltic concrete and two type B asphaltic concretes. The type A and one of the type B mixtures were used in pavements and will be evaluated later for durability and serviceability. The second type B mixture was made only for laboratory testing. In each instance, control batches of the same mixtures but without Asphadur were made for comparison. Type A is a high type asphaltic concrete, requires a minimum of 65 percent crushed particles and is generally used for higher traffic volume roads. Type B is used for intermediate or lower traffic volumes and requires a minimum of 30 percent crushed particles.
Resumo:
Interest in the use of ground rubber from used tires as a hot asphalt mix binder has been increasing due to the magnitude of the disposal problem posed by the annual addition of millions of waste tires to the refuse stream. This study evaluates, through laboratory means, the performance of asphalt-rubber as a hot mix binder as compared to conventional asphalt. The results indicate that asphalt-rubber outperforms its base asphalt in mixes of identical gradation and comparable void content on tests that are heavily dependent on binder characteristics (resilient modulus and indirect tension). An appreciable increase in rut resistance due to the use of asphalt-rubber is not indicated.
Resumo:
A number of claims have been made that polymer modified asphalt cements, multi-grade asphalt cements, and other modifications of the liquid asphalt will prevent rutting and other deterioration of asphalt mixes, thereby, extending the service life of asphalt pavements. This laboratory study evaluates regular AC-20 asphalt cement, PAC-30 polymer modified asphalt cement and AC-10-30 multi-grade asphalt cement. PAC-30 was also evaluated with 15% Gilsonite and 15% Witcurb in a 75% crushed stone - 25% sand mix. These mixtures were evaluated for all Marshall properties along with indirect tensile, resilient modulus, and creep resistance.
Resumo:
The Phase I research, Iowa Department of Transportation (IDOT) Project HR-214, "Feasibility Study of Strengthening Existing Single Span Steel Beam Concrete Deck Bridges," verified that post-tensioning can be used to provide strengthening of the composite bridges under investigation. Phase II research, reported here, involved the strengthening of two full-scale prototype bridges - one a prototype of the model bridge tested during Phase I and the other larger and skewed. In addition to the field work, Phase II also involved a considerable amount of laboratory work. A literature search revealed that only minimal data existed on the angle-plus-bar shear connectors. Thus, several specimens utilizing angle-plus-bar, as well as channels, studs and high strength bolts as shear connectors were fabricated and tested. To obtain additional shear connector information, the bridge model of Phase I was sawed into four composite concrete slab and steel beam specimens. Two of the resulting specimens were tested with the original shear connection, while the other two specimens had additional shear connectors added before testing. Although orthotropic plate theory was shown in Phase I to predict vertical load distribution in bridge decks and to predict approximate distribution of post-tensioning for right-angle bridges, it was questioned whether the theory could also be used on skewed bridges. Thus, a small plexiglas model was constructed and used in vertical load distribution tests and post-tensioning force distribution tests for verification of the theory. Conclusions of this research are as follows: (1) The capacity of existing shear connectors must be checked as part of a bridge strengthening program. Determination of the concrete deck strength in advance of bridge strengthening is also recommended. (2) The ultimate capacity of angle-plus-bar shear connectors can be computed on the basis of a modified AASHTO channel connector formula and an angle-to-beam weld capacity check. (3) Existing shear connector capacity can be augmented by means of double-nut high strength bolt connectors. (4) Post-tensioning did not significantly affect truck load distribution for right angle or skewed bridges. (5) Approximate post-tensioning and truck load distribution for actual bridges can be predicted by orthotropic plate theory for vertical load; however, the agreement between actual distribution and theoretical distribution is not as close as that measured for the laboratory model in Phase I. (6) The right angle bridge exhibited considerable end restraint at what would be assumed to be simple support. The construction details at bridge abutments seem to be the reason for the restraint. (7) The skewed bridge exhibited more end restraint than the right angle bridge. Both skew effects and construction details at the abutments accounted for the restraint. (8) End restraint in the right angle and skewed bridges reduced tension strains in the steel bridge beams due to truck loading, but also reduced the compression strains caused by post-tensioning.
Resumo:
The unifying objective of Phases I and II of this study was to determine the feasibility of the post-tensioning strengthening method and to implement the technique on two composite bridges in Iowa. Following completion of these two phases, Phase III was undertaken and is documented in this report. The basic objectives of Phase III were further monitoring bridge behavior (both during and after post-tensioning) and developing a practical design methodology for designing the strengthening system under investigation. Specific objectives were: to develop strain and force transducers to facilitate the collection of field data; to investigate further the existence and effects of the end restraint on the post-tensioning process; to determine the amount of post-tensioning force loss that occurred during the time between the initial testing and the retesting of the existing bridges; to determine the significance of any temporary temperature-induced post-tensioning force change; and to develop a simplified design methodology that would incorporate various variables such as span length, angle-of-skew, beam spacing, and concrete strength. Experimental field results obtained during Phases II and III were compared to the theoretical results and to each other. Conclusions from this research are as follows: (1) Strengthening single-span composite bridges by post-tensioning is a viable, economical strengthening technique. (2) Behavior of both bridges was similar to the behavior observed from the bridges during field tests conducted under Phase II. (3) The strain transducers were very accurate at measuring mid-span strain. (4) The force transducers gave excellent results under laboratory conditions, but were found to be less effective when used in actual bridge tests. (5) Loss of post-tensioning force due to temperature effects in any particular steel beam post-tensioning tendon system were found to be small. (6) Loss of post-tensioning force over a two-year period was minimal. (7) Significant end restraint was measured in both bridges, caused primarily by reinforcing steel being continuous from the deck into the abutments. This end restraint reduced the effectiveness of the post-tensioning but also reduced midspan strains due to truck loadings. (8) The SAP IV finite element model is capable of accurately modeling the behavior of a post-tensioned bridge, if guardrails and end restraints are included in the model. (9) Post-tensioning distribution should be separated into distributions for the axial force and moment components of an eccentric post-tensioning force. (10) Skews of 45 deg or less have a minor influence on post-tensioning distribution. (11) For typical Iowa three-beam and four-beam composite bridges, simple regression-derived formulas for force and moment fractions can be used to estimate post-tensioning distribution at midspan. At other locations, a simple linear interpolation gives approximately correct results. (12) A simple analytical model can accurately estimate the flexural strength of an isolated post-tensioned composite beam.
Resumo:
This study was conducted for the purpose of evaluating a new concept for a bank-protection structure: The Iowa Vane . The underlying idea involves countering the torque exerted on the primary flow by its curvature and vertical velocity gradient, thereby eliminating or significantly reducing the secondary flow and thus reducing the undermining of the outer banks and the high-velocity attack on it. The new structure consists of an array of short, vertical, submerged vanes installed with a certain orientation on the channel bed. A relatively small number of vanes can produce bend flows which are practically uniform across the channel. The height of the vanes is less than half the water depth, and their angle with the flow direction is of the order of l0 degrees. In this study, design relations have been established. The relations, and the vanes' overall performance, have been tested in a laboratory model under different flow and sediment conditions. The results are used for the design of an Iowa-Vane bank protection structure for a section of East Nishnabotna River along U.S. Highway 34 at Red Oak, Iowa.
Resumo:
In view of the energy, environmental, and economic advantages of the foamed asphalt process using local aggregates in cold mixes and the promising results from Research Project HR-212, a 4.2-mile section of county road in Muscatine County was built with foamed asphalt and local aggregates during August-September 1983. Extensive laboratory evaluation was carried out on five plant mixes representing foamed mixes used in the nine test sections, a laboratory prepared foamed mix, and a laboratory prepared hot mix similar to Plant Mix 1. The foamed mixes were compacted, cured under 15 curing conditions and tested for bulk specific gravity, Marshall stability at 77° F and at 140° F, cured moisture content, resilient modulus and effects of moisture damage due to freeze-thaw cycles, water soaking, and vacuum saturation. In addition, four sets of 83 core samples were taken at 1 to 15 months and tested for moisture content, specific gravity, Marshall stability, and resilient modulus. In summary, the test road has performed satisfactorily for almost two years. The few early construction problems encountered were to be expected for experimental projects dealing with new materials and technologies. Overall results to date are encouraging and foamed asphalt mixes have proved to have the potential as a viable base material in areas where marginal aggregates are available. It is hoped and expected that performance evaluation of the test sections will be continued and that more foamed asphalt trial projects will be constructed and monitored so that experiences and findings from this project can be verified and mix design criteria can be gradually established. For future foamed asphalt projects it is recommended that anti-stripping additives, such as hydrated lime, be added in view of the potential moisture susceptibility of foamed mixes observed in the laboratory evaluation.
Resumo:
Soil slope instability concerning highway infrastructure is an ongoing problem in Iowa, as slope failures endanger public safety and continue to result in costly repair work. While in the past extensive research has been conducted on slope stability investigations and analysis, this current research study consists of field investigations addressing both the characterization and reinforcement of such slope failures. While Volume I summarizes the research methods and findings of this study, Volume II provides procedural details for incorporating an infrequently-used testing technique, borehole shear tests, into practice. Fifteen slopes along Iowa highways were investigated, including thirteen slides (failed slopes), one unfailed slope, and one proposed embankment slope (the Sugar Creek Project). The slopes are mainly comprised of either clay shale or glacial till, and are generally gentle and of small scale, with slope angle ranging from 11 deg to 23 deg and height ranging from 6 to 23 m. Extensive field investigations and laboratory tests were performed for each slope. Field investigations included survey of slope geometry, borehole drilling, soil sampling, in-situ Borehole Shear Testing (BST) and ground water table measurement. Laboratory investigations mainly comprised of ring shear tests, soil basic property tests (grain size analysis and Atterberg limits test), mineralogy analyses, soil classifications, and natural water contents and density measurements on the representative soil samples from each slope. Extensive direct shear tests and a few triaxial compression tests and unconfined compression tests were also performed on undisturbed soil samples for the Sugar Creek Project. Based on the results of field and lab investigations, slope stability analysis was performed on each of the slopes to determine the possible factors resulting in the slope failures or to evaluate the potential slope instabilities using limit equilibrium methods. Deterministic slope analyses were performed for all the slopes. Probabilistic slope analysis and sensitivity study were also performed for the slope of the Sugar Creek Project. Results indicate that while the in-situ test rapidly provides effective shear strength parameters of soils, some training may be required for effective and appropriate use of the BST. Also, it is primarily intended to test cohesive soils and can produce erroneous results in gravelly soils. Additionally, the quality of boreholes affects test results, and disturbance to borehole walls should be minimized before test performance. A final limitation of widespread borehole shear testing may be its limited availability, as only about four to six test devices are currently being used in Iowa. Based on the data gathered in the field testing, reinforcement investigations are continued in Volume III.
Resumo:
Extensive programmed laboratory tests involving some 400 asphalt emulsion slurry seals (AESS) were conducted. Thirteen aggregates including nine Iowa sources, a quartzite, a synthetic aggregate (Haydite), a limestone stone from Nebraska, and a Chat aggregate from Kansas were tested in combination with four emulsions and two mineral fillers, resulting in a total of 40 material combinations. A number of meetings were held with the Iowa DOT engineers and 12 state highway departments that have had successful slurry seal experiences and records, and several slurry seal contractors and material and equipment suppliers were contacted. Asphalt emulsion slurry seal development, uses, characteristics, tests, and design methods were thoroughly reviewed in conjunction with Iowa's experiences through these meetings and discussions and through a literature search (covering some 140 articles and 12 state highway department specifications). It was found that, while asphalt emulsion slurry seals (when properly designed and constructed) can economically improve the quality and extend the life of existing pavement surface, experiences with them had been mixed due to the many material, slurry, and construction variables that affect their design, construction, and performance. The report discusses those variables identified during the course of the project and makes recommendations concerning design procedures, design criteria, specifications and the means of evaluating them.