942 resultados para inactivation enzyme
Resumo:
The high abortion rate of 45,X embryos indicates that patients with Turner syndrome and 45,X karyotype could be mosaics, in at least one phase of embryo development or cellular lineage, due to the need for the other sex chromosome presence for conceptus to be compatible with life. In cases of structural chromosomal aberrations or hidden mosaicism, conventional cytogenetic techniques can be ineffective and molecular investigation is indicated. Two hundred and fifty patients with Turner syndrome stigmata were studied and 36 who had female genitalia and had been cytogenetically diagnosed as having "pure" 45,X karyotype were selected after 100 metaphases were analyzed in order to exclude mosaicism and the presence of genomic Y-specific sequences (SRY, TSPY, and DAZ) was excluded by PCR. Genomic DNA was extracted from peripheral blood and screened by the human androgen receptor (HUMARA) assay. The HUMARA gene has a polymorphic CAG repeat and, in the presence of a second chromosome with a different HUMARA allele, a second band will be amplified by PCR. Additionally, the CAG repeats contain two methylation-sensitive HpaII enzyme restriction sites, which can be used to verify skewed inactivation. Twenty-five percent (9/36) of the cases showed a cryptic mosaicism involving a second X and approximately 14% (5/36), or 55% (5/9) of the patients with cryptic mosaicism, also presented skewed inactivation. The laboratory identification of the second X chromosome and its inactivation pattern are important for the clinical management (hormone replacement therapy, and inclusion in an oocyte donation program) and prognostic counseling of patients with Turner syndrome.
Resumo:
Diabetes in spontaneously hypertensive rats is associated with cortical renal GLUT1 and GLUT2 overexpression. Our objective was to evaluate the effect of the angiotensin-converting enzyme blockade on cortical renal GLUT1 and GLUT2 expression, urinary albumin and urinary TGF-β1. Streptozotocin, 50 mg/kg, or citrate buffer (N = 16) was administered as a single injection into the tail vein in adult spontaneously hypertensive rats (~260 g). Thirty days later, these diabetic spontaneously hypertensive rats received ramipril by gavage: 0.01 mg·kg-1·day-1 (D0.01, N = 14), 1 mg·kg-1·day-1 (D1, N = 9) or water (D, N = 11) for 15 days. Albumin and TGF-β1 (24-h urine), direct arterial pressure, renal tissue angiotensin-converting enzyme activity (fluorometric assay), and GLUT1 and GLUT2 protein levels (Western blot, renal cortex) were determined. Glycemia and glycosuria were higher (P < 0.05) in the diabetic rats compared with controls, but similar between the diabetic groups. Diabetes in spontaneously hypertensive rats lowered renal tissue angiotensin-converting enzyme activity (40%), which was reduced further when higher ramipril doses were used. Diabetes associated with hypertension raised GLUT1 by 28% (P < 0.0001) and GLUT2 by 76% (P = 0.01), and both doses of ramipril equally reduced cortical GLUT1 (D vs D1 and vs D0.01, P ≤ 0.001). GLUT2 levels were reduced in D0.01 (P < 0.05 vs D). Diabetes increased urinary albumin and TGF-β1 urinary excretion, but the 15-day ramipril treatment (with either dose) did not reduce them. In conclusion, ramipril is effective in lowering renal tissue angiotensin-converting enzyme activity, as well as blocking cortical GLUT1 overexpression, which may be beneficial in arresting the development of diabetic nephropathy.
Resumo:
Experimental data and few clinical non-randomized studies have shown that inhibition of the renin-angiotensin system by angiotensin-converting enzyme (ACE) associated or not with the use of mycophenolate mofetil (MMF) could delay or even halt the progression of chronic allograft nephropathy (CAN). In this retrospective historical study, we investigated whether ACE inhibition (ACEI) associated or not with the use of MMF has the same effect in humans as in experimental studies and what factors are associated with a clinical response. A total of 160 transplant patients with biopsy-proven CAN were enrolled. Eighty-one of them were on ACE therapy (G1) and 80 on ACEI_free therapy (G2). Patients were further stratified for the use of MMF. G1 patients showed a marked decrease in proteinuria and stabilized serum creatinine with time. Five-year graft survival after CAN diagnosis was more frequent in G1 (86.9 vs 67.7%; P < 0.05). In patients on ACEI-free therapy, the use of MMF was associated with better graft survival. The use of ACEI therapy protected 79% of the patients against graft loss (OR = 0.079, 95%CI = 0.015-0.426; P = 0.003). ACEI and MMF or the use of MMF alone after CAN diagnosis conferred protection against graft loss. This finding is well correlated with experimental studies in which ACEI and MMF interrupt the progression of chronic allograft dysfunction and injury. The use of ACEI alone or in combination with MMF significantly reduced proteinuria and stabilized serum creatinine, consequently improving renal allograft survival.
Resumo:
Angiotensin-converting enzyme (ACE) activity and polymorphism contribute significantly to the prognosis of patients with cardiomyopathy. The aim of this study was to determine the activity and type of ACE polymorphism in patients with familial and nonfamilial hypertrophic cardiomyopathy (HCM) and to correlate these with echocardiographic measurements (echo-Doppler). We studied 136 patients (76 males) with HCM (69 familial and 67 nonfamilial cases). Mean age was 41 ± 17 years. DNA was extracted from blood samples for the polymerase chain reaction and the determination of plasma ACE levels. Left ventricular mass, interventricular septum, and wall thickness were measured. Mean left ventricular mass index, interventricular septum and wall thickness in familial and nonfamilial forms were 154 ± 63 and 174 ± 57 g/m² (P = 0.008), 19 ± 5 and 21 ± 5 mm (P = 0.02), and 10 ± 2 and 12 ± 3 mm (P = 0.0001), respectively. ACE genotype frequencies were DD = 35%, ID = 52%, and II = 13%. A positive association was observed between serum ACE activity and left ventricular mass index (P = 0.04). Logistic regression showed that ACE activity was twice as high in patients with familial HCM and left ventricular mass index ≥190 g/m² compared with the nonfamilial form (P = 0.02). No other correlation was observed between ACE polymorphisms and the degree of myocardial hypertrophy. In conclusion, ACE activity, but not ACE polymorphisms, was associated with the degree of myocardial hypertrophy in the patients with HCM.
Resumo:
We have demonstrated that a synthetic DNA enzyme targeting early growth response factor-1 (Egr-1) can inhibit neointimal hyperplasia following vascular injury. However, the detailed mechanism of this inhibition is not known. Thus, the objective of the present study was to further investigate potential inhibitory mechanisms. Catalytic DNA (ED5) and scrambled control DNA enzyme (ED5SCR) were synthesized and transfected into primary cultures of rat vascular smooth muscle cells (VSMCs). VSMC proliferation and DNA synthesis were analyzed by the MTT method and BrdU staining, respectively. Egr-1, TGF-β1, p53, p21, Bax, and cyclin D1 expression was detected by RT-PCR and Western blot. Apoptosis and cell cycle assays were performed by FACS. Green fluorescence could be seen localized in the cytoplasm of 70.6 ± 1.52 and 72 ± 2.73% VSMCs 24 h after transfection of FITC-labeled ED5 and ED5SCR, respectively. We found that transfection with ED5 significantly inhibited cultured VSMC proliferation in vitro after 24, 48, and 72 h of serum stimulation, and also effectively decreased the uptake of BrdU by VSMC. ED5 specifically reduced serum-induced Egr-1 expression in VSMCs, further down-regulated the expression of cyclin D1 and TGF-β1, and arrested the cells at G0/G1, inhibiting entry into the S phase. FACS analysis indicated that there was no significant difference in the rate of apoptosis between ED5- and ED5SCR-transfected cells. Thus, ED5 can specifically inhibit Egr-1 expression, and probably inhibits VSMC proliferation by down-regulating the expressions of cyclin D1 and TGF-β1. However, ED5 has no effect on VSMC apoptosis.
Resumo:
Alcohol dependence poses a serious medical and sociological problem. It is influenced by multiple environmental and genetic factors, which may determine differences in alcohol metabolism. Genetic polymorphism of the enzymes involved in alcohol metabolism is highly ethnically and race dependent. The purpose of this study was to investigate the differences, if present, in the allele and genotype frequency of alcohol dehydrogenase 1B (ADH1B), ADH1C and the microsomal ethanol-oxidizing system (MEOS/CYP2E1) between alcohol-dependent individuals and controls and also to determine if these genotypes cause a difference in the age at which the patients become alcohol dependent. The allele and genotype frequencies of ADH1B, ADH1C, and CYP2E1 were determined in 204 alcohol dependent men and 172 healthy volunteers who do not drink alcohol (control group). Genotyping was performed by PCR-RFLP methods on white cell DNA. ADH1B*1 (99.3%) and ADH1C*1 (62.5%) alleles and ADH1B*1/*1 (N = 201) and ADH1C*1/*1 (N = 85) genotypes were statistically more frequent among alcohol-dependent subjects than among controls (99.3 and 62.5%, N = 201 and 85 vs 94.5 and 40.7%, N = 153 and 32, respectively). Differences in the CYP2E1 allele and genotype distribution between groups were not significant. The persons with ADH1C*1/*1 and CYP2E1*c1/*c2 genotypes became alcohol dependent at a considerably younger age than the subjects with ADH1C*1/*2, ADH1C*2/*2 and CYP2E1*c1/*c1 genotypes (28.08, 25.67 years vs 36.0, 45.05, 34.45 years, respectively). In the Polish men examined, ADH1C*1 and ADH1B*1 alleles and ADH1C*1/*1 and ADH1B*1/*1 genotypes favor alcohol dependence. The ADH1B*2 allele may protect from alcohol dependence. However, subjects with ADH1C*1/*1 and CYP2E1*c1/*c2 genotypes become alcohol dependent at a considerably younger age than the subjects with ADH1C*1/*2, ADH1C*2/*2 and CYP2E1*c1/*c1 genotypes.
Resumo:
Epithelium, a highly dynamic system, plays a key role in the homeostasis of the intestine. However, thus far a human intestinal epithelial cell line has not been established in many countries. Fetal tissue was selected to generate viable cell cultures for its sterile condition, effective generation, and differentiated character. The purpose of the present study was to culture human intestinal epithelial cells by a relatively simple method. Thermolysin was added to improve the yield of epithelial cells, while endothelin-3 was added to stimulate their growth. By adding endothelin-3, the achievement ratio (viable cell cultures/total cultures) was enhanced to 60% of a total of 10 cultures (initiated from 8 distinct fetal small intestines), allowing the generation of viable epithelial cell cultures. Western blot, real-time PCR and immunofluorescent staining showed that cytokeratins 8, 18 and mouse intestinal mucosa-1/39 had high expression levels in human intestinal epithelial cells. Differentiated markers such as sucrase-isomaltase, aminopeptidase N and dipeptidylpeptidase IV also showed high expression levels in human intestinal epithelial cells. Differentiated human intestinal epithelial cells, with the expression of surface markers (cytokeratins 8, 18 and mouse intestinal mucosa-1/39) and secretion of cytokines (sucrase-isomaltase, aminopeptidase N and dipeptidylpeptidase IV), may be cultured by the thermolysin and endothelin-3 method and maintained for at least 20 passages. This is relatively simple, requiring no sophisticated techniques or instruments, and may have a number of varied applications.
Resumo:
The medial hypothalamus is part of a neurobiological substrate controlling defensive behavior. It has been shown that a hypothalamic nucleus, the dorsomedial hypothalamus (DMH), is involved in the regulation of escape, a defensive behavior related to panic attacks. The role played by the DMH in the organization of conditioned fear responses, however, is less clear. In the present study, we investigated the effects of reversible inactivation of the DMH with the GABA A agonist muscimol on inhibitory avoidance acquisition and escape expression by male Wistar rats (approximately 280 g in weight) tested in the elevated T-maze (ETM). In the ETM, inhibitory avoidance, a conditioned defensive response, has been associated with generalized anxiety disorder. Results showed that intra-DMH administration of the GABA A receptor agonist muscimol inhibited escape performance, suggesting an antipanic-like effect (P < 0.05), without changing inhibitory avoidance acquisition. Although a higher dose of muscimol (1.0 nmol/0.2 µL; N = 7) also altered locomotor activity in an open field when compared to control animals (0.2 µL saline; N = 13) (P < 0.05), the lower dose (0.5 nmol/0.2 µL; N = 12) of muscimol did not cause any motor impairment. These data corroborate previous evidence suggesting that the DMH is specifically involved in the modulation of escape. Dysfunction of this regulatory mechanism may be relevant in the genesis/maintenance of panic disorder.
Resumo:
Pulmonary remodeling is an important feature of asthma physiopathology that can contribute to irreversible changes in lung function. Although neurokinins influence lung inflammation, their exact role in the extracellular matrix (ECM) remodeling remains to be determined. Our objective was to investigate whether inactivation of capsaicin-sensitive nerves modulates pulmonary ECM remodeling in animals with chronic lung inflammation. After 14 days of capsaicin (50 mg/kg, sc) or vehicle administration, male Hartley guinea pigs weighing 250-300 g were submitted to seven inhalations of increasing doses of ovalbumin (1, 2.5, and 5 mg/mL) or saline for 4 weeks. Seventy-two hours after the seventh inhalation, animals were anesthetized and mechanically ventilated and the lung mechanics and collagen and elastic fiber content in the airways, vessels and lung parenchyma were evaluated. Ovalbumin-exposed animals presented increasing collagen and elastic fiber content, respectively, in the airways (9.2 ± 0.9; 13.8 ± 1.2), vessels (19.8 ± 0.8; 13.4 ± 0.5) and lung parenchyma (9.2 ± 0.9; 13.8 ± 1.2) compared to control (P < 0.05). Capsaicin treatment reduced collagen and elastic fibers, respectively, in airways (1.7 ± 1.1; 7.9 ± 1.5), vessels (2.8 ± 1.1; 4.4 ± 1.1) and lung tissue (2.8 ± 1.1; 4.4 ± 1.1) of ovalbumin-exposed animals (P < 0.05). These findings were positively correlated with lung mechanical responses to antigenic challenge (P < 0.05). In conclusion, inactivation of capsaicin-sensitive nerve fibers reduces pulmonary remodeling, particularly collagen and elastic fibers, which contributes to the attenuation of pulmonary functional parameters.
Resumo:
Ricinus communis L. is of great economic importance due to the oil extracted from its seeds. Castor oil has been used for pharmaceutical and industrial applications, as a lubricant or coating agent, as a component of plastic products, as a fungicide or in the synthesis of biodiesel fuels. After oil extraction, a castor cake with a large amount of protein is obtained. However, this by-product cannot be used as animal feed due to the presence of toxic (ricin) and allergenic (2S albumin) proteins. Here, we propose two processes for detoxification and allergen inactivation of the castor cake. In addition, we establish a biological test to detect ricin and validate these detoxification processes. In this test, Vero cells were treated with ricin, and cell death was assessed by cell counting and measurement of lactate dehydrogenase activity. The limit of detection of the Vero cell assay was 10 ng/mL using a concentration of 1.6 x 10(5) cells/well. Solid-state fermentation (SSF) and treatment with calcium compounds were used as cake detoxification processes. For SSF, Aspergillus niger was grown using a castor cake as a substrate, and this cake was analyzed after 24, 48, 72, and 96 h of SSF. Ricin was eliminated after 24 h of SSF treatment. The cake was treated with 4 or 8% Ca(OH)2 or CaO, and both the toxicity and the allergenic properties were entirely abolished. A by-product free of toxicity and allergens was obtained.
Resumo:
Sex hormones modulate the action of both cytokines and the renin-angiotensin system. However, the effects of angiotensin I-converting enzyme (ACE) on the proinflammatory and anti-inflammatory cytokine levels in male and female spontaneously hypertensive rats (SHR) are unclear. We determined the relationship between ACE activity, cytokine levels and sex differences in SHR. Female (F) and male (M) SHR were divided into 4 experimental groups each (n = 7): sham + vehicle (SV), sham + enalapril (10 mg/kg body weight by gavage), castrated + vehicle, and castrated + enalapril. Treatment began 21 days after castration and continued for 30 days. Serum cytokine levels (ELISA) and ACE activity (fluorimetry) were measured. Male rats exhibited a higher serum ACE activity than female rats. Castration reduced serum ACE in males but did not affect it in females. Enalapril reduced serum ACE in all groups. IL-10 (FSV = 16.4 ± 1.1 pg/mL; MSV = 12.8 ± 1.2 pg/mL), TNF-α (FSV = 16.6 ± 1.2 pg/mL; MSV = 12.8 ± 1 pg/mL) and IL-6 (FSV = 10.3 ± 0.2 pg/mL; MSV = 7.2 ± 0.2 pg/mL) levels were higher in females than in males. Ovariectomy reduced all cytokine levels and orchiectomy reduced IL-6 but increased IL-10 concentrations in males. Castration eliminated the differences in all inflammatory cytokine levels (IL-6 and TNF-α) between males and females. Enalapril increased IL-10 in all groups and reduced IL-6 in SV rats. In conclusion, serum ACE inhibition by enalapril eliminated the sexual dimorphisms of cytokine levels in SV animals, which suggests that enalapril exerts systemic anti-inflammatory and anti-hypertensive effects.
Resumo:
This study investigated the consequences of intrauterine protein restriction on the gastrointestinal tract and particularly on the gene expression and activity of intestinal disaccharidases in the adult offspring. Wistar rat dams were fed isocaloric diets containing 6% protein (restricted, n = 8) or 17% protein (control, n = 8) throughout gestation. Male offspring (n = 5-8 in each group) were evaluated at 3 or 16 weeks of age. Maternal protein restriction during pregnancy produced offspring with growth restriction from birth (5.7 ± 0.1 vs 6.3 ± 0.1 g; mean ± SE) to weaning (42.4 ± 1.3 vs 49.1 ± 1.6 g), although at 16 weeks of age their body weight was similar to control (421.7 ± 8.9 and 428.5 ± 8.5 g). Maternal protein restriction also increased lactase activity in the proximal (0.23 ± 0.02vs 0.15 ± 0.02), medial (0.30 ± 0.06vs 0.14 ± 0.01) and distal (0.43 ± 0.07vs 0.07 ± 0.02 U·g-1·min-1) small intestine, and mRNA lactase abundance in the proximal intestine (7.96 ± 1.11vs 2.38 ± 0.47 relative units) of 3-week-old offspring rats. In addition, maternal protein restriction increased sucrase activity (1.20 ± 0.02 vs 0.91 ± 0.02 U·g-1·min-1) and sucrase mRNA abundance (4.48 ± 0.51 vs 1.95 ± 0.17 relative units) in the duodenum of 16-week-old rats. In conclusion, the present study shows for the first time that intrauterine protein restriction affects gene expression of intestinal enzymes in offspring.
Resumo:
Most drugs function by binding reversibly to specific biological targets, and therapeutic effects generally require saturation of these targets. One means of decreasing required drug concentrations is incorporation of reactive metal centers that elicit irreversible modification of targets. A common approach has been the design of artificial proteases/nucleases containing metal centers capable of hydrolyzing targeted proteins or nucleic acids. However, these hydrolytic catalysts typically provide relatively low rate constants for target inactivation. Recently, various catalysts were synthesized that use oxidative mechanisms to selectively cleave/inactivate therapeutic targets, including HIV RRE RNA or angiotensin converting enzyme (ACE). These oxidative mechanisms, which typically involve reactive oxygen species (ROS), provide access to comparatively high rate constants for target inactivation. Target-binding affinity, co-reactant selectivity, reduction potential, coordination unsaturation, ROS products (metal-associated vsmetal-dissociated; hydroxyl vs superoxide), and multiple-turnover redox chemistry were studied for each catalyst, and these parameters were related to the efficiency, selectivity, and mechanism(s) of inactivation/cleavage of the corresponding target for each catalyst. Important factors for future oxidative catalyst development are 1) positioning of catalyst reduction potential and redox reactivity to match the physiological environment of use, 2) maintenance of catalyst stability by use of chelates with either high denticity or other means of stabilization, such as the square planar geometric stabilization of Ni- and Cu-ATCUN complexes, 3) optimal rate of inactivation of targets relative to the rate of generation of diffusible ROS, 4) targeting and linker domains that afford better control of catalyst orientation, and 5) general bio-availability and drug delivery requirements.
Resumo:
We investigated the GABA-induced inactivation of V2 neurons and terminals on the receptive field properties of this area in an anesthetized and paralyzedCebus apella monkey. Extracellular single-unit activity was recorded using tungsten microelectrodes in a monkey before and after pressure-injection of a 0.25 or 0.5 M GABA solution. The visual stimulus consisted of a bar moving in 8 possible directions. In total, 24 V2 neurons were studied before and after blocker injections in 4 experimental sessions following GABA injection into area V2. A group of 10 neurons were studied over a short period. An additional 6 neurons were investigated over a long period after the GABA injection. A third group of 8 neurons were studied over a very long period. Overall, these 24 neurons displayed an early (1-20 min) significant general decrease in excitability with concomitant changes in orientation or direction selectivity. GABA inactivation in area V2 produced robust inhibition in 80% and a significant change in directional selectivity in 60% of the neurons examined. These GABA projections are capable of modulating not only levels of spontaneous and driven activity of V2 neurons but also receptive field properties such as direction selectivity.
Resumo:
Diabetic retinopathy (DR) is a serious complication of diabetes mellitus that may result in blindness. We evaluated the effects of activation of endogenous angiotensin converting enzyme (ACE) 2 on the early stages of DR. Rats were administered an intravenous injection of streptozotocin to induce hyperglycemia. The ACE2 activator 1-[[2-(dimethylamino) ethyl] amino]-4-(hydroxymethyl)-7-[[(4-methylphenyl) sulfonyl] oxy]-9H-xanthone 9 (XNT) was administered by daily gavage. The death of retinal ganglion cells (RGC) was evaluated in histological sections, and retinal ACE2, caspase-3, and vascular endothelial growth factor (VEGF) expressions were analyzed by immunohistochemistry. XNT treatment increased ACE2 expression in retinas of hyperglycemic (HG) rats (control: 13.81±2.71 area%; HG: 14.29±4.30 area%; HG+XNT: 26.87±1.86 area%; P<0.05). Importantly, ACE2 activation significantly increased the RCG number in comparison with HG animals (control: 553.5±14.29; HG: 530.8±10.3 cells; HG+XNT: 575.3±16.5 cells; P<0.05). This effect was accompanied by a reduction in the expression of caspase-3 in RGC of the HG+XNT group when compared with untreated HG rats (control: 18.74±1.59; HG: 38.39±3.39 area%; HG+XNT: 27.83±2.80 area%; P<0.05). Treatment with XNT did not alter the VEGF expression in HG animals (P>0.05). Altogether, these findings indicate that activation of ACE2 reduced the death of retinal ganglion cells by apoptosis in HG rats.