891 resultados para imunomodulação humoral


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two different types of immunological reaction are of assistance in the diagnosis of cancer: The first is detection of a weak immunological response of the patient toward his own tumor cells. Unfortunately the currently available techniques for the demonstration of humoral or cellular immunological reaction against autologous tumor cells are not reproducible enough to be recommended as routine clinical tests. Secondly, it is possible to use antisera, obtained by immunization of animals with human tumor extracts, for the detection of substances released into the blood by the tumor cells. The two major antigens associated with human cancer that can be measured in the blood by very sensitive immunological methods are the alphafetoprotein (AFP) and the carcinoembryonic antigen (CEA). It is very important for the physician to be fully alive to the usefulness and limitations of such tests in order to interpret them correctly. Clinical situations in which the measurement of AFP and CEA can provide useful information are reviewed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plasmapheresis is an extracorporeal technique used to remove pathogenic macromolecules from the circulation, particularly autoantibodies. This is illustrated in 2 female patients. The first patient, aged 61 years, was treated successfully with non-selective plasmapheresis for acute humoral rejection shortly after receiving a renal allograft. In the second patient, aged 82 years, plasmapheresis for refractory myasthenia gravis had to be stopped because of bradycardia and hypotension during the procedure. She was treated successfully with immunoglobulins. Plasmapheresis is used to treat neurological, renal, haematological and systemic disorders. In nonselective plasmapheresis, the plasma is replaced with saline and albumin or donor plasma. In selective plasmapheresis a highly selective filter is used to remove a specific, pathogenic macromolecule. Adverse effects of the treatment include disturbances of the acid-base equilibrium or the coagulation, and allergic reactions. Most of these complications, however, can nowadays be avoided.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordinated interactions between T and B cells are crucial for inducing physiological B cell responses. Mutant mice in which tyrosine 136 of linker for activation of T cell (LAT) is replaced by a phenylalanine (Lat(Y136F)) exhibit a strong CD4(+) T cell proliferation in the absence of intended immunization. The resulting effector T cells produce high amounts of T(H)2 cytokines and are extremely efficient at inducing polyclonal B cell activation. As a consequence, these Lat(Y136F) mutant mice showed massive germinal center formations and hypergammaglobulinemia. Here, we analyzed the involvement of different costimulators and their ligands in such T-B interactions both in vitro and in vivo, using blocking antibodies, knockout mice, and adoptive transfer experiments. Surprisingly, we showed in vitro that although B cell activation required contact with T cells, CD40, and inducible T cell costimulator molecule-ligand (ICOSL) signaling were not necessary for this process. These observations were further confirmed in vivo, where none of these molecules were required for the unfolding of the LAT CD4(+) T cell expansion and the subsequent polyclonal B cell activation, although, the absence of CD40 led to a reduction of the follicular B cell response. These results indicate that the crucial functions played by CD40 and ICOSL in germinal center formation and isotype switching in physiological humoral responses are partly overcome in Lat(Y136F) mice. By comparison, the absence of CD80-CD86 was found to almost completely block the in vitro B cell activation mediated by Lat(Y136F) CD4(+) T cells. The role of CD80-CD86 in T-B cooperation in vivo remained elusive due to the upstream implication of these costimulatory molecules in the expansion of Lat(Y136F) CD4(+) T cells. Together, our data suggest that CD80 and CD86 costimulators play a key role in the polyclonal B cell activation mediated by Lat(Y136F) CD4(+) T cells even though additional costimulatory molecules or cytokines are likely to be required in this process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Viruses have developed strategies to counteract signalling through Toll-like receptors (TLRs) that are involved in the detection of viruses and induction of proinflammatory cytokines and IFNs. Vaccinia virus (VACV) encodes A46 protein which disrupts TLR signalling by interfering with TLR: adaptor interactions. Since the innate immune response to viruses is critical to induce protective immunity, we studied whether deletion of A46R gene in a NYVAC vector expressing HIV-1 Env, Gag, Pol and Nef antigens (NYVAC-C) improves immune responses against HIV-1 antigens. This question was examined in human macrophages and in mice infected with a single A46R deletion mutant of the vaccine candidate NYVAC-C (NYVAC-C-ΔA46R). The viral gene A46R is not required for virus replication in primary chicken embryo fibroblast (CEF) cells and its deletion in NYVAC-C markedly increases TNF, IL-6 and IL-8 secretion by human macrophages. Analysis of the immune responses elicited in BALB/c mice after DNA prime/NYVAC boost immunization shows that deletion of A46R improves the magnitude of the HIV-1-specific CD4 and CD8 T cell immune responses during adaptive and memory phases, maintains the functional profile observed with the parental NYVAC-C and enhances anti-gp120 humoral response during the memory phase. These findings establish the immunological role of VACV A46R on innate immune responses of macrophages in vitro and antigen-specific T and B cell immune responses in vivo and suggest that deletion of viral inhibitors of TLR signalling is a useful approach for the improvement of poxvirus-based vaccine candidates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The functional interaction of BAFF and APRIL with TNF receptor superfamily members BAFFR, TACI and BCMA is crucial for development and maintenance of humoral immunity in mice and humans. Using a candidate gene approach, we identified homozygous and heterozygous mutations in TNFRSF13B, encoding TACI, in 13 individuals with common variable immunodeficiency. Homozygosity with respect to mutations causing the amino acid substitutions S144X and C104R abrogated APRIL binding and resulted in loss of TACI function, as evidenced by impaired proliferative response to IgM-APRIL costimulation and defective class switch recombination induced by IL-10 and APRIL or BAFF. Family members heterozygous with respect to the C104R mutation and individuals with sporadic common variable immunodeficiency who were heterozygous with respect to the amino acid substitutions A181E, S194X and R202H had humoral immunodeficiency. Although signs of autoimmunity and lymphoproliferation are evident, the human phenotype differs from that of the Tnfrsf13b-/- mouse model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A proliferation-inducing ligand (APRIL), a member of the TNF ligand superfamily with an important role in humoral immunity, is also implicated in several cancers as a prosurvival factor. APRIL binds two different TNF receptors, B cell maturation antigen (BCMA) and transmembrane activator and cylclophilin ligand interactor (TACI), and also interacts independently with heparan sulfate proteoglycans. Because APRIL shares binding of the TNF receptors with B cell activation factor, separating the precise signaling pathways activated by either ligand in a given context has proven quite difficult. In this study, we have used the protein design algorithm FoldX to successfully generate a BCMA-specific variant of APRIL, APRIL-R206E, and two TACI-selective variants, D132F and D132Y. These APRIL variants show selective activity toward their receptors in several in vitro assays. Moreover, we have used these ligands to show that BCMA and TACI have a distinct role in APRIL-induced B cell stimulation. We conclude that these ligands are useful tools for studying APRIL biology in the context of individual receptor activation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Breast milk transmission of HIV remains an important mode of infant HIV acquisition. Enhancement of mucosal HIV-specific immune responses in milk of HIV-infected mothers through vaccination may reduce milk virus load or protect against virus transmission in the infant gastrointestinal tract. However, the ability of HIV/SIV strategies to induce virus-specific immune responses in milk has not been studied. In this study, five uninfected, hormone-induced lactating, Mamu A*01(+) female rhesus monkey were systemically primed and boosted with rDNA and the attenuated poxvirus vector, NYVAC, containing the SIVmac239 gag-pol and envelope genes. The monkeys were boosted a second time with a recombinant Adenovirus serotype 5 vector containing matching immunogens. The vaccine-elicited immunodominant epitope-specific CD8(+) T lymphocyte response in milk was of similar or greater magnitude than that in blood and the vaginal tract but higher than that in the colon. Furthermore, the vaccine-elicited SIV Gag-specific CD4(+) and CD8(+) T lymphocyte polyfunctional cytokine responses were more robust in milk than in blood after each virus vector boost. Finally, SIV envelope-specific IgG responses were detected in milk of all monkeys after vaccination, whereas an SIV envelope-specific IgA response was only detected in one vaccinated monkey. Importantly, only limited and transient increases in the proportion of activated or CCR5-expressing CD4(+) T lymphocytes in milk occurred after vaccination. Therefore, systemic DNA prime and virus vector boost of lactating rhesus monkeys elicits potent virus-specific cellular and humoral immune responses in milk and may warrant further investigation as a strategy to impede breast milk transmission of HIV.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As part of a European initiative (EuroVacc), we report the design, construction, and immunogenicity of two HIV-1 vaccine candidates based on a clade C virus strain (CN54) representing the current major epidemic in Asia and parts of Africa. Open reading frames encoding an artificial 160-kDa GagPolNef (GPN) polyprotein and the external glycoprotein gp120 were fully RNA and codon optimized. A DNA vaccine (DNA-GPN and DNA-gp120, referred to as DNA-C), and a replication-deficient vaccinia virus encoding both reading frames (NYVAC-C), were assessed regarding immunogenicity in Balb/C mice. The intramuscular administration of both plasmid DNA constructs, followed by two booster DNA immunizations, induced substantial T-cell responses against both antigens as well as Env-specific antibodies. Whereas low doses of NYVAC-C failed to induce specific CTL or antibodies, high doses generated cellular as well as humoral immune responses, but these did not reach the levels seen following DNA vaccination. The most potent immune responses were detectable using prime:boost protocols, regardless of whether DNA-C or NYVAC-C was used as the priming or boosting agent. These preclinical findings revealed the immunogenic response triggered by DNA-C and its enhancement by combining it with NYVAC-C, thus complementing the macaque preclinical and human phase I clinical studies of EuroVacc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Progressive multifocal leukoencephalopathy (PML) is a frequently fatal disease caused by uncontrolled polyomavirus JC (JCV) in severely immunodeficient patients. We investigated the JCV-specific cellular and humoral immunity in the Swiss HIV Cohort Study. We identified PML cases (n = 29), as well as three matched controls per case (n = 87), with prospectively cryopreserved peripheral blood mononuclear cells and plasma at diagnosis. Nested controls were matched according to age, gender, CD4(+) T-cell count, and decline. Survivors (n = 18) were defined as being alive for >1 year after diagnosis. Using gamma interferon enzyme-linked immunospot assays, we found that JCV-specific T-cell responses were lower in nonsurvivors than in their matched controls (P = 0.08), which was highly significant for laboratory- and histologically confirmed PML cases (P = 0.004). No difference was found between PML survivors and controls or for cytomegalovirus-specific T-cell responses. PML survivors showed significant increases in JCV-specific T cells (P = 0.04) and immunoglobulin G (IgG) responses (P = 0.005). IgG responses in survivors were positively correlated with CD4(+) T-cell counts (P = 0.049) and negatively with human immunodeficiency virus RNA loads (P = 0.03). We conclude that PML nonsurvivors had selectively impaired JCV-specific T-cell responses compared to CD4(+) T-cell-matched controls and failed to mount JCV-specific antibody responses. JCV-specific T-cell and IgG responses may serve as prognostic markers for patients at risk.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Recent data have suggested that a population of CD4+ CD25high T cells, phenotypically characterized by the expression of CD45RO and CD127, is significantly expanded in stable liver and kidney transplant recipients and represents alloreactive T cells. We analyzed this putative new alloreactive cellular marker in various groups of kidney transplant recipients. Patients & methods: Flow cytometry was used to analyze the expression of CD25, CD45RO and CD127 on peripheral CD4+ T cells. Of 73 kidney transplant recipients, 59 had a stable graft function under standard immunosuppressive therapy (IS), 5 had biopsy-proven chronic humoral rejection (CHR), 8 were stable under minimal IS and one was an operationally "tolerant" patient who had discontinued IS for more than 3 years. Sixty-six healthy subjects (HS) were studied as controls. Results: Overall, the alloreactive T cell population was found to be significantly increased in the 73 kidney recipients (mean ± SE: 15.03 ± 1.04% of CD4+ CD25high T cells) compared to HS (5.93 ± 0.39%) (p<0.001). In the 5 patients with CHR, this population was highly expanded (31.33 ± 4.16%), whereas it was comparable to HS in the 8 stable recipients receiving minimal IS (6.12 ± 0.86%), in 4 patients who had been switched to sirolimus (4.21 ± 0.53%) as well as in the unique "tolerant" recipient (4.69%). Intermediate levels (15.84 ± 0.93%) were found in the 55 recipients with stable graft function on standard CNI-based IS. Regulatory T cells, defined as CD4+CD25high FoxP3+ CD127low, were found to be significantly reduced in all recipients except in those with minimal or no IS, and this reduction was particularly striking in recipients with CHR. Conclusion: After kidney transplantation, an alloreactive T cell population was found to be significantly expanded and it correlates with the clinical status of the recipients. Interestingly, in stable patients with minimal (or no) IS as well as in patients on sirolimus, alloreactive T cells were comparable the healthy controls. Measuring circulating CD4+CD25high CD45RO+ CD127high T cells may become a useful monitoring tool after transplantation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When exposed to parasites, hosts often mount energetically expensive immune responses, and this may alter resource allocation between competing life history traits including other components of the immune system. Here, we investigated whether a humoral immune challenge towards a vaccine reduces or enhances the cutaneous immune responses towards an injection of lipopolysaccharid (LPS, innate immunity) and phytohaemagglutinin (PHA, T-cell immunity) in nestling tawny owls in interaction with the degree of plumage melanin-based coloration. The humoral immune challenge enhanced the response to LPS similarly in differently coloured nestlings. In contrast, the same humoral immune challenge enhanced immune response to PHA in dark reddish melanic nestlings while reducing it in pale reddish melanic nestlings. Our results highlight that both antagonistic and synergistic interactions can take place among branches of immune system, and that the sign and magnitude of these interactions can vary with immune responses involved and the degree of melanin-based coloration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Genetic color polymorphism is widespread in nature. There is an increasing interest in understanding the adaptive value of heritable color variation and trade-off resolution by differently colored individuals. Melanin-based pigmentation is often associated with variation in many different life history traits. These associations have recently been suggested to be the outcome of pleiotropic effects of the melanocortin system. Although pharmacological research supports that MC1R, a gene with a major role in vertebrate pigmentation, has important immunomodulatory effects, evidence regarding pleiotropy at MC1R in natural populations is still under debate. We experimentally assessed whether MC1R-based pigmentation covaries with both inflammatory and humoral immune responses in the color polymorphic Eleonora's falcon. By means of a cross-fostering experiment, we disentangled potential genetic effects from environmental effects on the covariation between coloration and immunity. Variation in both immune responses was primarily due to genetic factors via the nestlings' MC1R-related color genotype/phenotype, although environmental effects via the color morph of the foster father also had an influence. Overall, dark nestlings had lower immune responses than pale ones. The effect of the color morph of the foster father was also high, but in the opposite direction, and nestlings raised by dark eumelanic foster fathers had higher immune responses than those raised by pale foster fathers. Although we cannot completely discard alternative explanations, our results suggest that MC1R might influence immunity in this species. Morph-specific variation in immunity as well as pathogen pressure may therefore contribute to the long-term maintenance of genetic color polymorphism in natural populations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The research on T cell immunosuppression therapies has attracted most of the attention in clinical transplantation. However, B cells and humoral immune responses are increasingly acknowledged as crucial mediators of chronic allograft rejection. Indeed, humoral immune responses can lead to renal allograft rejection even in patients whose cell-mediated immune responses are well controlled. On the other hand, newly studied B cell subsets with regulatory effects have been linked to tolerance achievement in transplantation. Better understanding of the regulatory and effector B cell responses may therefore lead to new therapeutic approaches. Mesenchymal stem cells (MSC) are arising as a potent therapeutic tool in transplantation due to their regenerative and immunomodulatory properties.The research on MSCs has mainly focused on their effects onT cells and although data regarding the modulatory effects of MSCs on alloantigen-specific humoral response in humans is scarce, it has been demonstrated that MSCs significantly affect B cell functioning. In the present review we will analyze and discuss the results in this field.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Staphylococcus aureus is a major cause of serious infections in humans and animals and a vaccine is becoming a necessity. Lactococcus lactis is a non-pathogenic bacterium that can be used as a vector for the delivery of antigens. We investigated the ability of non-living L. lactis heterologously expressing S. aureus clumping factor A (ClfA) and fibronectin-binding protein A (FnbpA), alone or together, to elicit an immune response in rats and protect them from S. aureus experimental infective endocarditis (IE). L. lactis ClfA was used for immunization against S. aureus Newman (expressing ClfA but not FnbpA), while L. lactis ClfA, L. lactis FnbpA, as well as L. lactis ClfA/FnbpA, were used against S. aureus P8 (expressing ClfA and FnbpA). Vaccination of rats with L. lactis ClfA elicited antibodies that inhibited binding of S. aureus Newman to fibrinogen, triggered the production of IL-17A and conferred protection to 13/19 (68%) of the animals from IE (P<0.05). Immunization with L. lactis ClfA, L. lactis FnbpA or L. lactis ClfA/FnbpA also produced antibodies against the target proteins, but these did not prevent binding of S. aureus P8 to fibrinogen or fibronectin and did not protect animals against S. aureus P8 IE. Moreover, immunization with constructs containing FnbpA did not increase IL-17A production. These results indicate that L. lactis is a valuable antigen delivery system able to elicit efficient humoral and cellular responses. However, the most appropriate antigens affording protection against S. aureus IE are yet to be elucidated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background The MPER region of the HIV-1 envelope glycoprotein gp41 is targeted by broadly neutralizing antibodies. However, the localization of this epitope in a hydrophobic environment seems to hamper the elicitation of these antibodies in HIV infected individuals. We have quantified and characterized anti-MPER antibodies by ELISA and by flow cytometry using a collection of mini gp41-derived proteins expressed on the surface of 293T cells. Longitudinal plasma samples from 35 HIV-1 infected individuals were assayed for MPER recognition and MPER-dependent neutralizing capacity using HIV-2 viruses engrafted with HIV-1 MPER sequences. Results Miniproteins devoid of the cysteine loop of gp41 exposed the MPER on 293T cell membrane. Anti-MPER antibodies were identified in most individuals and were stable when analyzed in longitudinal samples. The magnitude of the responses was strongly correlated with the global response to the HIV-1 envelope glycoprotein, suggesting no specific limitation for anti-MPER antibodies. Peptide mapping showed poor recognition of the C-terminal MPER moiety and a wide presence of antibodies against the 2F5 epitope. However, antibody titers failed to correlate with 2F5-blocking activity and, more importantly, with the specific neutralization of HIV-2 chimeric viruses bearing the HIV-1 MPER sequence; suggesting a strong functional heterogeneity in anti-MPER humoral responses. Conclusions Anti-MPER antibodies can be detected in the vast majority of HIV-1 infected individuals and are generated in the context of the global anti-Env response. However, the neutralizing capacity is heterogeneous suggesting that eliciting neutralizing anti-MPER antibodies by immunization might require refinement of immunogens to skip nonneutralizing responses.