994 resultados para hydrophobically modified
Synthesis of propylene glycol methyl ether over amine modified porous silica by ultrasonic technique
Resumo:
A new criterion for shear band formation in metallic glasses is proposed based on the shear plane criterion proposed by Packard and Schuh [1]. This modified shear plane (MSP) criterion suggests that a shear band is not initiated randomly throughout the entire material under stress but is initiated at the physical boundaries or defects and at locations where the highest normal stress modified maximum shear stress occurs. Moreover, the same as in the shear plan criterion, the shear stress all over the shear band should exceed the shear yield strength of the material. For a complete shear band to form, both requirements need to be fulfilled. The shear yield strength of the material is represented by the shear stress of the point at which the shear band stops. The new criterion agrees very well with experimental results in both the determination of the shear yield strength and the shear band path. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Solidification behavior and microstructural evolution of surface modified layers in plasma cladding technique are studied via numerical simulations. Both the coupling effect of temperature and solid volume fraction are considered in the proposed thermal analytical model, by which the transient temperature distributions are calculated and the shape of melting pool is determined. Furthermore, we perform microscopic thermal analysis on the nucleation and growth behaviors of ceramic hardening phases and dendrites, as well as the kinetics of related two-phase flow systems. By comparing with experimental observations, the evolution mechanisms of the morphology of Al2O3 ceramic hardening layer are explained. Based on the above results, a relationship among the scanning velocity of plasma stream, dendritic growth rate and the advancing speed of solid/liquid interface is found, and an energy criterion is proposed for predicting the pushing/engulfing transition of ceramic particles by grain growth fronts. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Here we prepare carbon nanotubes modified with ammonium persulfate, very short carbon nanotubes with 50-100 nanometer length was obtained, and the higher P potential of 52 mV was detected, these supporting the successful modification. HeLa cells were irradiated with P rays via adding or absent above functionalized carbon nanotubes (f- WCNTs) into cell culture medium with different concentration and radiation dosage. Confocal microscopy images and fluorescence-labeled DNA detection verified the successfully pure multi-walled carbon nanotubes (p-WCNTs) and f-WCNTs penetrated into cells. Compared with pure radiation, by MTT test, f-WCNTs induced cell death markedly with about 8.7 times higher than former one under little dose of radiation; meanwhile, no obvious toxicity was observed both in p-WCNTs and f-WCNTs without of radiation exposure. We hypothesized that large amount of hydroxyl and carbonyl organs on the surface of very short f-WCNTs changed into free radicals result from radiations led cell damage. These implied that f-WCNTs could be regarded as a new radiosensitizer.
Resumo:
The present paper reports the biosorption of uranium onto chemically modified yeast cells, Rhodotorula glutinis, in order to study the role played by various functional groups in the cell wall. Esterification of the carboxyl groups and methylation of the amino groups present in the cells were carried out by methanol and formaldehyde treatment, respectively. The uranium sorption capacity increased 31% for the methanol-treated biomass and 11% for the formaldehyde-treated biomass at an initial uranium concentration of 140 mg/L The enhancement of uranium sorption capacity was investigated by Fourier transform infrared (FTIR) spectroscopy analysis, with amino and carboxyl groups were determined to be the important functional groups involved in uranium binding. The biosorption isotherms of uranium onto the raw and chemically modified biomass were also investigated with varying uranium concentrations. Langmuir and Freundlich models were well able to explain the sorption equilibrium data with satisfactory correlation coefficients higher than 0.9. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
An attractive Fischer-Tropsch catalyst was prepared using an activated carbon as carrier to support cobalt based catalysts. Zr promoted Co/AC catalysts remarkably enhanced the activity and the selectivity toward diesel distillates and lower the methane selectivity. This modification may be attributed to specific behavior of activated carbon with high surface area and the weak interaction between metallic cobalt active sites and activated carbon. It was emphasized that the pore size of activated carbon played a very important role in restricting the growth of carbon chain to wax.
Resumo:
A novel family of hybrid catalyst with high turnover frequency (TOF) and high selectivity towards aldehydes for hydroformylation of olefins could be successfully approached through direct coordination with the PPh3 ligand to the highly dispersed Rh metal particle precursors. A further advantage is that the catalyst is easily prepared and recyclable. The results revealed that hydroformylation of olefins to aldehydes dominantly took place on the surface of PPh3 ligand modified Rh metal particles of the hybrid catalyst. It was found that the formation of chemical coordination bond between the Rh metal particles and the lone-pair electron of PPh3 was evident through the TG and P-31 NMR measurement. Moreover, the addition of PPh3 onto the Rh/SiO2 exert a significant influence on the adsorption state of reactant CO, H-2 and C2H4 on the PPh3-Rh/SiO2 sample, which probably lead to good catalytic performances for hydroformylation of olefins. (C) 2004 Elsevier B.V. All rights reserved.