773 resultados para hydration
Resumo:
JUSTIFICATIVA E OBJETIVOS: O objetivo desta pesquisa foi estudar os efeitos agudos do contraste radiológico em situações de restrição de volume, avaliando-se os efeitos renais e cardiovasculares após a injeção intra-arterial de contraste radiológico de alta osmolaridade. MÉTODO: Participaram do estudo 16 cães anestesiados com tiopental sódico (15 mg.kg-1) e fentanil (15 µg.kg-1) em bolus, seguido de infusão contínua nas doses de 40 µg.kg-1.min-1 (tiopental sódico) e 0,1 µg.kg-1.min-1 (fentanil). Foi feita hidratação com solução de glicose a 5% (0,03 mL.kg-1.min-1) e a ventilação pulmonar foi controlada mecanicamente com ar comprimido. Foram verificados os seguintes atributos: freqüência cardíaca (FC); pressão arterial média (PAM); pressão da veia cava inferior (PVI); débito cardíaco (DC); hematócrito (Ht); fluxo plasmático efetivo renal (FPER); fluxo sangüíneo renal (FSR); ritmo de filtração glomerular (RFG); fração de filtração; resistência vascular renal (RVR); volume urinário (VU); osmolaridade plasmática e urinária; depuração osmolar, depuração de água livre e depuração de sódio e de potássio; sódio e potássio plasmáticos; excreção urinária e fracionária de sódio e potássio e temperatura retal. Estes atributos foram avaliados em quatro momentos: 30 (M1), 60 (M2), 90 (M3) e 120 (M4) minutos após o início da infusão de para-aminohipurato de sódio e creatinina (início da experiência). No momento 2, no grupo G1 foi feita injeção intra-arterial de solução fisiológica a 0,9% (1,24 mL.kg-1), e no grupo G2 foi injetado contraste radiológico (1,24 mL.kg-1) pela mesma via. RESULTADOS: O grupo G1 apresentou aumento da FC, do FPER, do FSR, da osmolaridade plasmática, da depuração de sódio e da excreção urinária de sódio; apresentou ainda diminuição da osmolaridade urinária, do potássio plasmático, da depuração de potássio e da temperatura retal. No grupo G2 ocorreu aumento da FC, da RVR, do VU, da depuração osmolar, da depuração de sódio e da excreção urinária e fracionária de sódio; ocorreu também redução do (a): hematócrito, ritmo de filtração glomerular, fração de filtração, osmolaridade urinária, depuração de água livre, sódio e potássio urinários, potássio plasmático e temperatura retal. CONCLUSÕES: Neste estudo, conclui-se que a injeção intra-arterial do contraste radiológico causou efeito bifásico na função renal. Inicialmente, provocou aumento da diurese e da excreção de sódio, mas, posteriormente, houve piora das condições hemodinâmicas e, conseqüentemente, da função renal, com aumento da resistência vascular renal e diminuição do ritmo de filtração glomerular.
Resumo:
Two groups of rats with electrolytic lesions of the medial and upper septal area (MUL) or, alternatively, of the anteroventral portion of the third ventricle (AV3V) and a third group of sham-operated rats were water loaded and received three carbachol injections into the locus coeruleus according to the following schedule: 1) prelesion, 2) on the second postlesion day and 3) on the seventh postlesion day. Both MUL and AV3V lesions inhibited the carbachol-induced natriuresis on the second postlesion day. Recovery was almost complete after MUL but not after AV3V lesion on the seventh day. Water deprivation also reduced the carbachol-induced natriuresis but passive hydration of AV3V animals did not avoid the impairment induced by the lesion. Transient seizure phenomena such as clonic convulsions, salivation and analgesia subsequent to carbachol injection were not altered by the lesions.
Resumo:
Water, compared with plasma at a pH of 7.4, is a weak acid. The addition of free water to a patient should have an acidifying effect (dilutional acidosis) and the removal of it, an alkalinizing effect (concentrational alkalosis). The specific effects of free water loss or gain in a relatively complex fluid such as plasma has, to the authors' knowledge, not been reported. This information would be useful in the interpretation of the effect of changes in free water in patients. Plasma samples from goats were either evaporated in a tonometer to 80% of baseline volume or hydrated by the addition of distilled water to 120% of baseline volume. The pH and partial pressure of carbon dioxide, sodium, potassium, ionized calcium, chloride, lactate, phosphorous, albumin, and total protein concentrations were measured. Actual base excess (ABE), standard bicarbonate, anion gap, strong ion difference, strong ion gap, unmeasured anions, and the effects of sodium, chloride, phosphate, and albumin changes on ABE were calculated. Most parameters changed 20% in proportion to the magnitude of dehydration or hydration. Bicarbonate concentration, however, increased only 11% in the evaporation trial and decreased only -2% in the dehydration trial. The evaporation trial was associated with a mild, but significant, metabolic alkalotic effect (ABE increased 3.2 mM/L), whereas the hydration trial was associated with a slight, insignificant metabolic acidotic effect (ABE decreased only 0.6 mM/L). The calculated free water ABE effect (change in sodium concentration) was offset by opposite changes in calculated chloride, lactate, phosphate, and albumin ABE effects.
Resumo:
In this work we present evidence that water molecules are actively involved on the control of binding affinity and binding site discrimination of a drug to natural DNA. In a previous study, the effect of water activity (a(w)) on the energetic parameters of actinomycin-D intercalation to natural DNA was determined using the osmotic stress method (39). This earlier study has shown evidence that water molecules act as an allosteric regulator of ligand binding to DNA via the effect of water activity on the long-range stability of the DNA secondary structure. In this work we have carried out DNA circularization experiments using the plasmid pUC18 in the absence of drugs and in the presence of different neutral solutes to evaluate the contribution of water activity to the energetics of DNA helix unwinding. The contribution of water to these independent reactions were made explicit by the description of how the changes in the free energy of ligand binding to DNA and in the free energy associated with DNA helix torsional deformation are linked to a(w) via changes in structural hydration. Taken together, the results of these studies reveal an extensive linkage between ligand binding affinity and site binding discrimination, and long range helix conformational changes and DNA hydration, This is strong evidence that water molecules work as a classical allosteric regulator of ligand binding to the DNA via its contribution to the stability of the double helix secondary structure, suggesting a possible mechanism by which the biochemical machinery of DNA processing takes advantage of the low activity of water into the cellular milieu.
Resumo:
The local environment of Er3+ ions in microporous titanosilicate ETS-10 and in synthetic narsarsukite and glassy materials obtained by calcination of ETS-10 has been investigated by EXAFS, Raman and photoluminescence spectroscopies. Er L-III-edge EXAFS studies of Er3+-doped ETS-10 support the view that the exchanged Er3+ ions reside close to the (negatively charged) TiO6 octahedra. In ETS-10, Er3+ is partially bonded to framework oxygen atoms and hydration water molecules. The Er...Ti distance (3.3 Angstrom) is similar to the Na...Ti distances (3.15-3.20 Angstrom) reported previously for Na-ETS-10. Although the exact location of the ErO6 units within the host structure of Er3+-doped synthetic narsarsukite is still an open question, it is most likely that Er3+ substitutes Ti4+ rather than Na+ ions. EXAFS spectroscopy indicates that no significant clustering of erbium atoms occurs in the titanosilicate samples studied. Evidence for the insertion of Er3+ ions in the framework of narsarsukite has been obtained by Raman spectroscopy. This is indicated by the increasing full-width at half-maximum (FWHM) of the 775 cm(-1) peak and the increasing intensity of the anatase peaks as the erbium content increases. In addition, as the narsarsukite Er3+ content increases a band at ca. 515 cm(-1) firstly broadens and subsequently a new peak appears at ca. 507 cm(-1).Er3+-doped narsarsukite exhibits a characteristic local vibrational frequency, (h) over bar omega ca. 330 cm(-1), with an electron-phonon coupling, g ca. 0.2, which constitutes additional evidence for framework Er3+ insertion. The number of lines in the infrared emission spectrum of synthetic narsarsukite indicates the presence of two optically-active erbium centres with very similar local environments and an average I-4(13/2) lifetime of 7.8 +/- 0.2 ms.
Resumo:
Several neutral solutes, ranging in size from methanol to a tetrasaccharide, stachyose, are shown to stabilize the left-handed Z form of the methylated polynucleotide poly(dG-m(5)dC). The action of these solutes is consistent with an osmotic stress, that is, with their effect on water chemical potentials coupled to a difference in the number of-associated water molecules between the B and Z conformations. The apparent difference in hydration between the two forms is, however, dependent on the particular solute used to probe the reaction. The effect of solutes is not consistent either with a direct binding of solute or with an indirect effect on electrostatics or ion binding through changes in the solution dielectric constant. The interplay of NaCl and neutral solute in modulating the B-Z transition suggests that salt also could be stabilizing the Z form through an osmotic stress.
Resumo:
By close control of experimental variables affecting precipitation, solid-state compounds of the type Th(OH)(m)L4-m.nH(2)O, where L stands for 4-methoxy-benzylidenepyruvate, cinnamylidenepyruvate or 4-dimethylaminocinnamylidene-pyruvate; m=0 to 3 and n=0.5-3 were isolated. Chemical analysis, TG, DTG, DSC and X-ray powder diffractometry have been employed to characterize and to study the thermal behavior of these compounds in dynamic air atmosphere. In all cases, hydration water is slowly lost between 30 and 160degreesC; a continuous, slow rate, mass loss is observed thereafter and beyond 280-400degreesC the rate of decomposition/oxidation increased rapidly, to give ThO2 as the final product, beginning at 412-510degreesC. The results associated with the hydroxo-compounds indicate that the loss of constitution water (OH ions) and the decomposition / oxidation of the organic moieties occur as simultaneous process.
Resumo:
We investigated the effect of a daily supplement of 200 mg of magnesium (as MgO) for two menstrual cycles on the severity of premenstrual symptoms in a randomized, double-blind, placebo-controlled, crossover study. A daily supplement of 200 mg of Mg (as MgO) or placebo was administered for two menstrual cycles to each volunteer, who kept a daily record of her symptoms, using a 4-point scale in a menstrual diary of 22 items. Symptoms were grouped into six categories: PMS-A (anxiety), PMS-C (craving), PMS-D (depression), PMS-H (hydration), PMS-O (other), and PMS-T (total overall symptoms). Urinary Mg output/24 hours was estimated from spot samples using the Mg/creatinine ratio. Analysis of variance for 38 women showed no effect of Mg supplementation compared with placebo in any category in the first month of supplementation. In the second month there was a greater reduction (p = 0.009) of symptoms of PMS-H (weight gain, swelling of extremities, breast tenderness, abdominal bloating) with Mg supplementation compared with placebo. Compliance to supplementation was confirmed by the greater mean estimated 24-hour urinary output of Mg (p = 0.013) during Mg supplementation (100.8 mg) compared with placebo (74.1 mg). A daily supplement of 200 mg of Mg (as MgO) reduced mild premenstrual symptoms of fluid retention in the second cycle of administration.
Resumo:
In our country, the intensive culture of fish has been making progress due to the availability of extruded rations, which are characterized by the way they have been formulated to assist the nutritional demands of the tropical species and for facilitating a better practice of alimentary handling. This process checks the extruded product density and the desirable physical/chemical aspects to a diet that should be handled in the water, the critical factor of this activity. It is important to emphasize that this product stays to the surface of the water, facilitates the consumption control and the observation of the general aspects of the school of fish, as well as guaranteeing that no deterioration of the physical/chemical characteristics of the water occurs. The floating characteristic of the extruded ration is preferable for farmers because most of the tropical species feed at the surface of the water. In some cases, in the function of the alimentary habit, the thermal conditions of the water and the handling system produce granules with different densities. This is due to the humidity and the applied cooking heat, which modifies the time of hydration, and consequently the ability to float. To establish the physical presentation idea for a ration for tropical fishes, it is necessary that the pellets come in sizes, textures, humidities and densities in order to allow for the different phases of the lives of the fishes. This ration should be the result of characteristics of the species, such as the anatomophysiologics particularities, alimentary habits, digestive capacity and alimentary behavior. Only in this way is it possible to offer to those fishes a ration whose nutritious value and physical presentation facilitate the best biological and economic answers.Those aspects need to be reviewed because the tropical species that are cultivated in our country present selective behavior in relation to the size of the pellet. Generally, this has access to the digestive system without waste; the digestibility, therefore, is dependent upon the size of the particles and the physical aspects of the pellets. They should still consider that those granules could be less abrasive and softer. The extruded rations available in the national market present a qualitative reference to its proteic level, whose consequence allows us to infer that those are overestimated for the final phase of those fishes. Thus, the final cost of production is made unfeasible. In this point of view of the development of the national fish culture, and the growing adoption of the intensive system of production, it can link that such progress is a function of the availability of the rations in the extruded form. Although this technique of processing of rations has revolutionized the market in such a way that has been seen as preferable for farmers, some feel that there is a lack of products best suited for the initial phases of fingerlings production.
Resumo:
Objective: the purpose of this study was to evaluate the effectiveness of various surface treatments for resin-modified glass-ionomer restorative materials by determining dye uptake spectrophotometrically. Method and materials: Two hundred twenty-four specimens, 4.1 mm in diameter and 2.0 mm thick, were made of 3 materials: Vitremer, Fuji II LC, and Photac-Fil Aplicap. Specimens were divided into 15 groups. The positive and negative control specimens remained unprotected, while the experimental specimens were protected with Heliobond light-activated bonding resin, Colorama nail varnish, or surface coatings indicated by the manufacturers of the glass-ionomer materials. Finishing Gloss for Vitremer, Fuji Varnish for Fuji II LC, and Ketac Glaze for Photac-Fil. The disks were immersed in 0.05% methylene blue for 24 hours except for the negative control group, which was immersed in deionized water. After 24 hours, the disks were removed, washed, and individually placed in 1 mL of 65% nitric acid for 24 hours. The solutions were centrifuged and the spectrophotometric absorbance was determined at 606 nm. The dye uptake was expressed in micrograms of dye per milliliter, and the results were analyzed with the Kruskal-Wallis test. Results: There were no differences in dye uptake among the 3 resin-modified glass-ionomer restorative materials, however, all of them required surface protection. Conclusion: the best surface protection for the 3 evaluated materials was obtained with Heliobond light-activated bonding resin.
Resumo:
Solid-state compounds of general formula LnL(3).2H(2)O, where Ln is heavier trivalent lanthanides and yttrium, L is 4-chlorobenzylidenepyruvate have been synthetised.On heating these compounds decompose in steps. They lose the hydration water in the first step and the thermal decomposition of the anhydrous compounds occurs with the formation of oxochloride (Eu, Gd); mixture of oxide and oxochloride that decrease with increasing of atomic number of metal (Tb-Tm); or oxide (Yb, Lu, Y) as final residue, up to 900degreesC. The dehydration enthalpies found for terbium, holmium, ytterbium and yttrium compounds were: 34.93, 42.40, 57.39 and 62.24 kJ mol(-1), respectively.
Resumo:
Synthesis and X-ray structure of a dinuclear platinum(II) complex with the ligand saccharin(sac) are described. The structure shows two approximately square-planar platinum centers. Each platinum atom is coordinated to one water molecule and three N-bonded saccharinate ligands. The two centers are linked through two potassium atoms. Each potassium atom interacts with six oxygen atoms from hydration and coordinated water molecules and from carbonyl and sulfonate groups of the ligands. It is suggested that, in aqueous solution, the dimeric structure of the complex is dissociated and the monomeric species K[Pt(sac)(3)(H2O)] is formed. The complex was dissolved in water and submitted to in vitro cytotoxic analyses using HeLa cells (human cervix cancer). It was shown that the monomeric complex elicited a potent cytotoxic activity when compared to the vehicle-treated cells. The IC50 value for the monomeric complex is 6.8 mu M, a little bit higher than that obtained for cisplatin. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Solid state compounds M-4-DMCP, where 4-DMCP is 4-dimethylaminocynnamylidenepyruvate and M represents Mn (II), Co (II), Ni (II), Cu (II), Zn (II) and Pb (II) were prepared. These compounds were studied by thermoanalytical techniques: thermogravimetry (TG), derivative thermogravimetry (DTG), differential scanning calorimetry (DSC), X-ray diffraction powder patterns and complexometric titration with EDTA. From the results obtained by the complexometric titration with EDTA, TG, DTG and DSC curves, was possible to establish the hydration degree, stoichiometry and thermal stability of the prepared compounds.
Resumo:
Solid-state compounds of general formula LnL(3)center dot nH(2)O, where Ln represents heavier lanthanides and yttrium and L is 2-chlorobenzylidenepyruvate, have been synthesized. Chemical analysis, simultaneous thermogravimetry-differential analysis (TG-DTA), differential scanning calorimetry (DSC), X-ray powder diffractometry, elemental analysis and infrared spectroscopy have been employed to characterize and to study the thermal behaviour of these compounds in dynamic air atmosphere.On heating these compounds decompose in four (Gd, Tb, Ho to Lu, Y) or five (Eu, Dy) steps. They lose the hydration water in the first step and the thermal decomposition of the anhydrous compounds up to 1200 degrees C occurs with the formation of the respective oxide, Tb4O7 and Ln(2)O(3) (Ln=Eu, Gd, Dy to Lu and Y) as final residue. The dehydration enthalpies found for these compounds (Eu, to Lu and Y) were: 65.77, 55.63, 86.89, 121.65, 99.80, 109.59, 131.02, 119.78, 205.46 and 83.11 kJ mol(-1), respectively.
Resumo:
The complexes (NH4)(2)[ MoO2( C2H2O3)(2)]center dot H2O, (NH4)(2)[MoO2(C8H6O3)(2)] and (NH4)(2) [MoO3(C4H4O6)]center dot H2O were prepared by reaction of MoO3 with glycolic, mandelic and tartaric acids, respectively. The complexes were characterized by elemental and thermal analysis, IR spectroscopy and X- ray diffraction. Crystals of the glycolate and tartarate complexes are orthorhombic and the mandelate complex is monoclinic. Elemental and thermal analysis data showed that the glycolate and tartarate complexes are monohydrated. Hydration water is not present in the structure of the mandelate complex. IR spectra showed COO- is involved in coordination as well as the oxygen atom of the deprotonated hydroxyl group of the alpha-carbon. The glycolate molybdenum complexes with general formula M-2[MoO2(C2H2O3)(2)]center dot nH(2)O, where M is an alkali metal and n=1 or 1/2, were also prepared and characterized. Aqueous solutions of the glycolate complex become blue and mandelate and tartarate complexes change to yellow or brown when exposed to UV- radiation.