945 resultados para hollow atom (HA)
Resumo:
We propose a scheme to probe quantum coherence in the state of a nanocantilever based on its magnetic coupling (mediated by a magnetic tip) with a spinor Bose Einstein condensate (BEC). By mapping the BEC into a rotor, its coupling with the cantilever results in a gyroscopic motion whose properties depend on the state of the cantilever: the dynamics of one of the components of the rotor angular momentum turns out to be strictly related to the presence of quantum coherence in the state of the cantilever. We also suggest a detection scheme relying on Faraday rotation, which produces only a very small back-action on the BEC and is thus suitable for a continuous detection of the cantilever's dynamics.
Resumo:
Efficient guiding of 1-ps infrared laser pulses with power exceeding 10 TW has been demonstrated through hollow capillary tubes with 40- and 100-mu m internal diameters and lengths up to 10 mm, with transmission greater than 80% of the incident energy coupled into the capillary. The beam is guided via multiple reflections off a plasma formed on the walls of the guide by the pulse's rising edge, as inferred from optical probe measurements.
Resumo:
Calculations of ?-spectra for positron annihilation on a selection of molecules, including methane and its fluoro-substitutes, ethane, propane, butane and benzene are presented. The annihilation ?-spectra characterise the momentum distribution of the electron-positron pair at the instant of annihilation. The contribution to the ?-spectra from individual molecular orbitals is obtained from electron momentum densities calculated using modern computational quantum chemistry density functional theory tools. The calculation, in its simplest form, effectively treats the low-energy (thermalised, room-temperature) positron as a plane wave and gives annihilation ?-spectra that are about 40% broader than experiment, although the main chemical trends are reproduced. We show that this effective 'narrowing' of the experimental spectra is due to the action of the molecular potential on the positron, chiefly, due to the positron repulsion from the nuclei. It leads to a suppression of the contribution of small positron-nuclear separations where the electron momentum is large. To investigate the effect of the nuclear repulsion, as well as that of short-range electron-positron and positron-molecule correlations, a linear combination of atomic orbital description of the molecular orbitals is employed. It facilitates the incorporation of correction factors which can be calculated from atomic many-body theory and account for the repulsion and correlations. Their inclusion in the calculation gives -spectrum linewidths that are in much better agreement with experiment. Furthermore, it is shown that the effective distortion of the electron momentum density, when it is observed through positron annihilation -spectra, can be approximated by a relatively simple scaling factor. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
Resumo:
Described here is a proposed experiment to use laser-assisted photorecombination of positrons from a trap-based beam and metal atoms in the gas phase to measure positron-atom binding energies. Signal rates are estimated, based in part upon experience studying resonant annihilation spectra using a trapbased positron beam. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
Resumo:
We present a mechanism for cooling atoms by a laser beam reflected from a single mirror. The cooling relies on the dipole force and thus in principle applies to arbitrary refractive particles including atoms, molecules, or dielectric spheres. Friction and equilibrium temperatures are derived by an analytic perturbative approach. Finally, semiclassical Monte-Carlo simulations are performed to validate the analytic results.