917 resultados para helical-core fiber
Resumo:
Fiber bragg grating (FBG) sensors have been widely used for number of sensing applications like temperature, pressure, acousto-ultrasonic, static and dynamic strain, refractive index change measurements and so on. Present work demonstrates the use of FBG sensors in in-situ measurement of vacuum process with simultaneous leak detection capability. Experiments were conducted in a bell jar vacuum chamber facilitated with conventional Pirani gauge for vacuum measurement. Three different experiments have been conducted to validate the performance of FBG sensor in monitoring vacuum creating process and air bleeding. The preliminary results of FBG sensors in vacuum monitoring have been compared with that of commercial Pirani gauge sensor. This novel technique offers a simple alternative to conventional method for real time monitoring of evacuation process. Proposed FBG based vacuum sensor has potential applications in vacuum systems involving hazardous environment such as chemical and gas plants, automobile industries, aeronautical establishments and leak monitoring in process industries, where the electrical or MEMS based sensors are prone to explosion and corrosion.
Resumo:
A holographic optical element (HOE) based single-mode hybrid fiber optic interferometer for realizing the zero-order fringe is described. The HOE proposed and used integrates the actions of a beam combiner and a lens, and endows the interferometer with high tolerance for repositioning errors. The proposed method is simple and offers advantages such as the elimination of in situ processing for the hologram.
Resumo:
Edge-sharing bioctahedral (ESBO) complexes [Ru-2(OMe)(O2CC6H4-p-X)3(1-MeIm)(4)](ClO4)2 (X = OMe (1a), Me (1b)) and [Ru-2(O2CC6H4-P-X)(4)(1-MeIm)(4)](ClO4)(2) (X = OMe (2a), Me (2b)) are prepared by reacting Ru2Cl(O(2)CR)(4) with 1-methylimidazole (1-MeIm) in methanol followed by treatment with NaClO4. Complex 2a and the PF6- salt (1a') of 1a have been structurally characterized. Crystal data for 1a.1.5MeCN. 0.5Et(2)O: triclinic, P (1) over bar, a = 13.125(2) Angstrom, b = 15.529(3) Angstrom, c 17.314(5) Angstrom, a; 67.03(2)degrees, beta 68.05(2)degrees, gamma = 81.38(1)degrees, V 3014(1) Angstrom(3), Z = 2. Crystal data for 2a: triclinic, P (1) over bar, a 8.950(1) Angstrom, b = 12.089(3) Angstrom, c = 13.735(3) Angstrom, alpha 81.09(2)degrees, beta = 72.27(1)degrees, gamma = 83.15(2)degrees, V = 1394(1) Angstrom(3), Z = 1. The complexes consist of a diruthenium(III) unit held by two monoatomic and two three-atom bridging ligands. The 1-MeIm ligands are at the terminal sites of the [Ru-2(mu-L)(eta(1):mu-O(2)CR)(eta(1):eta(1):mu-O(2)CR)(2)](2+) core having a Ru-Ru single bond (L = OMe or eta(1)-O(2)CR). The Ru-Ru distance and the Ru-O-Ru angle in the core of 1a' and 2a are 2.49 Angstrom and similar to 76 degrees. The complexes undergo one-electron oxidation and reduction processes in MeCN-0.1 M TBAP to form mixed-valence diruthenium species with Ru-Ru bonds of orders 1.5 and 0.5, respectively.
Resumo:
We have modeled the rotation curves of 21 galaxies observed by Amram et al. (1992), by combining the effects of rigid rotation, gravity, and turbulence. The main motivation behind such modeling is to study the formation of coherent structures in turbulent media and explore its role in the large-scale structures of the universe. The values of the parameters such as mass, turbulent velocity, and angular velocity derived from the rotation curve fits are in good agreement with those derived from the prevalent models.
Resumo:
Scaled Particle Theory (SPT) has been applied to predict the total free energies of micellization of ionic as well as nonionic micellar systems containing an aryl ring. A modification of the previously developed model has been made, proposing a two-zone model of micellar core which corroborates with the structural information available for such systems. The results are in good agreement with experimental data and also confirm the dictating role of cavity forming free energies for such systems
Resumo:
We measure the Cu 2p X-ray photoemission spectrum (XPS) of Sr2CuO3 and analyze it by means of exact diagonalization calculations for (CunO3n)(4n-) clusters. In Sr2CuO3, the intensity ratio of the 3d(y) satellite to the 3d(10)(L) under bar main line is 0.35-0.4, which is evidently smaller than that in the other high-T-c related cuprates. We ascribe it as the smaller charge-transfer energy between the Cu 3d and O 2p. The origin of the broad main-line of Sr2CuO3 is also discussed.
Resumo:
The electronic structures of a wide range of early transition-metal (TM) compounds, including Ti and V oxides with metal valences ranging from 2+ to 5+ and formal d-electron numbers ranging from 0 to 2, have been investigated by a configuration-interaction cluster model analysis of the core-level metal 2p x-ray photoemission spectra (XPS). Inelastic energy-loss backgrounds calculated from experimentally measured electron-energy-loss spectra (EELS) were subtracted from the XPS spectra to remove extrinsic loss features. Parameter values deduced for the charge-transfer energy Delta and the d-d Coulomb repulsion energy U are shown to continue the systematic trends established previously for the late TM compounds, giving support to a charge-transfer mechanism for the satellite structures. The early TM compounds are characterized by a large metal d-ligand p hybridization energy, resulting in strong covalency in these compounds. Values for Delta and U suggest that many early TM compounds should be reclassified as intermediate between the charge-transfer regime and the Mott-Hubbard regime.
Resumo:
Cardiac arrhythmias, such as ventricular tachycardia (VT) and ventricular fibrillation (VF), are among the leading causes of death in the industrialized world. These are associated with the formation of spiral and scroll waves of electrical activation in cardiac tissue; single spiral and scroll waves are believed to be associated with VT whereas their turbulent analogs are associated with VF. Thus, the study of these waves is an important biophysical problem. We present a systematic study of the combined effects of muscle-fiber rotation and inhomogeneities on scroll-wave dynamics in the TNNP (ten Tusscher Noble Noble Panfilov) model for human cardiac tissue. In particular, we use the three-dimensional TNNP model with fiber rotation and consider both conduction and ionic inhomogeneities. We find that, in addition to displaying a sensitive dependence on the positions, sizes, and types of inhomogeneities, scroll-wave dynamics also depends delicately upon the degree of fiber rotation. We find that the tendency of scroll waves to anchor to cylindrical conduction inhomogeneities increases with the radius of the inhomogeneity. Furthermore, the filament of the scroll wave can exhibit drift or meandering, transmural bending, twisting, and break-up. If the scroll-wave filament exhibits weak meandering, then there is a fine balance between the anchoring of this wave at the inhomogeneity and a disruption of wave-pinning by fiber rotation. If this filament displays strong meandering, then again the anchoring is suppressed by fiber rotation; also, the scroll wave can be eliminated from most of the layers only to be regenerated by a seed wave. Ionic inhomogeneities can also lead to an anchoring of the scroll wave; scroll waves can now enter the region inside an ionic inhomogeneity and can display a coexistence of spatiotemporal chaos and quasi-periodic behavior in different parts of the simulation domain. We discuss the experimental implications of our study.
Resumo:
Code Division Multiple Access (CDMA) techniques, by far, had been applied to LAN problems by many investigators, An analytical study of well known algorithms for generation of Orthogonal codes used in FO-CDMA systems like those for prime, quasi-Prime, Optical Orthogonal and Matrix codes has been presented, Algorithms for OOCs like Greedy/Modified Greedy/Accelerated Greedy algorithms are implemented. Many speed-up enhancements. for these algorithms are suggested. A novel Synthetic Algorithm based on Difference Sets (SADS) is also proposed. Investigations are made to vectorise/parallelise SADS to implement the source code on parallel machines. A new matrix for code families of OOCs with different seed code-words but having the same (n,w,lambda) set is formulated.
Resumo:
Utilising Jones' method associated with the Wiener-Hopf technique, explicit solutions are obtained for the temperature distributions on the surface of a cylindrical rod without an insulated core as well as that inside a cylindrical rod with an insulated inner core when the rod, in either of the two cases, is allowed to enter, with a uniform speed, into two different layers of fluid with different cooling abilities. Simple expressions are derived for the values of the sputtering temperatures of the rod at the points of entry into the respective layers, assuming the upper layer of the fluid to be of finite depth and the lower of infinite extent. Both the problems are solved through a three-part Wiener-Hopf problem of special type and the numerical results under certain special circumstances are obtained and presented in tabular forms.
Resumo:
Reaction of [Ru2O(O(2)CR)(2)(MeCN)(4)(PPh(3))(2)](ClO4)(2) (1) with 1,2-diaminoethane (en) in MeOH-H2O yielded a mixture of products from which a diamagnetic ruthenium(II) complex [Ru(MeCN)(en)(2)(PPh(3))](ClO4)(2) (2) and a paramagnetic ruthenium(III) species [Ru(O(2)CR)(en)(2)(PPh(3))](BPh(4))(2) (3) (R = Ph, a; C6H4-p-Me, b; C6H4-p-OMe, c) were isolated and characterized. The crystal structure of complex 2, obtained by X-ray diffraction analysis, shows a cis arrangement of the unidentate ligands in this octahedral complex. Complex 3 displays an axial EPR spectrum. Complex 2 undergoes two successive irreversible metal-centred one-electron oxidation processes at 1.13 and 1.33 V vs SCE in MeCN-0.1 M [NBu(4)(n)]ClO4 at 50 mV s(-1). The mechanistic aspects of the core cleavage reactions in 1 are discussed.
Resumo:
alpha,beta-Dehydrophenylalanine residues constrain the peptide backbone to beta-bend conformation. A pentapeptide containing four consecutive (Delta Phe) residues has been synthesised and crystallised. The peptide Boc-LAla-Delta Phe-Delta Phe-Delta Phe-Delta Phe-NHMe (C45H46N6O7, MW = 782.86) was crystallised from an acetonitrile/methanol mixture. The crystal belongs to the orthorhombic space group P2(1)2(1)2(1) With a = 19.455(6), b = 20.912(9), c = 11.455(4) Angstrom and Z = 4. The X-ray (MoKalpha, lambda = 0.7107 Angstrom) intensity data were collected using the Rigaku-AFC7 diffractrometer. The crystal structure was determined by direct methods and refined using the least-squares technique, R = 8.41% for 1827 reflections with \F-o\ > 4 sigma\F-o\. The molecule contains the largest stretch of consecutive dehydrophenylalanine residues whose crystal structure has been determined so far. The peptide adopts left-handed 3(10)-helical conformation despite the presence of LAla at the N-terminus. The mean phi, psi values, averaged across the last four residues are 56.8 degrees and 17.5 degrees, respectively. There are four 4-->1 intramolecular hydrogen bonds, characteristic of the 3(10)-helix. In the crystal each molecule interacts with four crystallographically symmetric molecules with one hydrogen bond each.
Resumo:
It is well-known that the senses (or the handedness) of the helical assemblies formed from compressed monolayers and bilayers of chiral amphiphiles are highly specific about the chirality of the monomers concerned. We present here a molecular approach that can successfully predict the senses of such helical morphologies. The present approach is based on a reduced tractable description in terms of an effective pair potential (EPP) which depends on the distance of separation and the relative orientations of the two amphiphiles. This approach explicitly considers the pairwise intermolecular interactions between the groups attached to the chiral centers of the two neighboring amphiphiles. It is found that for a pair of the same kind of enantiomers the minimum energy configuration favors a twist angle between molecules and that this twist from neighbor to neighbor gives rise to the helicity of the aggregate. From the known twist angles at the minimum energy configuration the successive arrangement of an array of molecules can be predicted. Therefore, the sense of the helicity can be predicted from the molecular interactions. The predicted senses of the helical structures are in complete agreement with all known experimental results.