869 resultados para height partition clustering


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we propose a graph stream clustering algorithm with a unied similarity measure on both structural and attribute properties of vertices, with each attribute being treated as a vertex. Unlike others, our approach does not require an input parameter for the number of clusters, instead, it dynamically creates new sketch-based clusters and periodically merges existing similar clusters. Experiments on two publicly available datasets reveal the advantages of our approach in detecting vertex clusters in the graph stream. We provide a detailed investigation into how parameters affect the algorithm performance. We also provide a quantitative evaluation and comparison with a well-known offline community detection algorithm which shows that our streaming algorithm can achieve comparable or better average cluster purity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The nature and underlying mechanisms of an inverse association between adult height and the risk of coronary artery disease (CAD) are unclear. 
Methods: We used a genetic approach to investigate the association between height and CAD, using 180 height-associated genetic variants. We tested the association between a change in genetically determined height of 1 SD (6.5 cm) with the risk of CAD in 65,066 cases and 128,383 controls. Using individual-level genotype data from 18,249 persons, we also examined the risk of CAD associated with the presence of various numbers of height-associated alleles. To identify putative mechanisms, we analyzed whether genetically determined height was associated with known cardiovascular risk factors and performed a pathway analysis of the height-associated genes. 
Results: We observed a relative increase of 13.5% (95% confidence interval [CI], 5.4 to 22.1; P<0.001) in the risk of CAD per 1-SD decrease in genetically determined height. There was a graded relationship between the presence of an increased number of height-raising variants and a reduced risk of CAD (odds ratio for height quartile 4 versus quartile 1, 0.74; 95% CI, 0.68 to 0.84; P<0.001). Of the 12 risk factors that we studied, we observed significant associations only with levels of low-density lipoprotein cholesterol and triglycerides (accounting for approximately 30% of the association). We identified several overlapping pathways involving genes associated with both development and atherosclerosis. 
Conclusions: There is a primary association between a genetically determined shorter height and an increased risk of CAD, a link that is partly explained by the association between shorter height and an adverse lipid profile. Shared biologic processes that determine achieved height and the development of atherosclerosis may explain some of the association. (Funded by the British Heart Foundation and others.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction
Mild cognitive impairment (MCI) has clinical value in its ability to predict later dementia. A better understanding of cognitive profiles can further help delineate who is most at risk of conversion to dementia. We aimed to (1) examine to what extent the usual MCI subtyping using core criteria corresponds to empirically defined clusters of patients (latent profile analysis [LPA] of continuous neuropsychological data) and (2) compare the two methods of subtyping memory clinic participants in their prediction of conversion to dementia.

Methods
Memory clinic participants (MCI, n = 139) and age-matched controls (n = 98) were recruited. Participants had a full cognitive assessment, and results were grouped (1) according to traditional MCI subtypes and (2) using LPA. MCI participants were followed over approximately 2 years after their initial assessment to monitor for conversion to dementia.

Results
Groups were well matched for age and education. Controls performed significantly better than MCI participants on all cognitive measures. With the traditional analysis, most MCI participants were in the amnestic multidomain subgroup (46.8%) and this group was most at risk of conversion to dementia (63%). From the LPA, a three-profile solution fit the data best. Profile 3 was the largest group (40.3%), the most cognitively impaired, and most at risk of conversion to dementia (68% of the group).

Discussion
LPA provides a useful adjunct in delineating MCI participants most at risk of conversion to dementia and adds confidence to standard categories of clinical inference.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clusters of text documents output by clustering algorithms are often hard to interpret. We describe motivating real-world scenarios that necessitate reconfigurability and high interpretability of clusters and outline the problem of generating clusterings with interpretable and reconfigurable cluster models. We develop two clustering algorithms toward the outlined goal of building interpretable and reconfigurable cluster models. They generate clusters with associated rules that are composed of conditions on word occurrences or nonoccurrences. The proposed approaches vary in the complexity of the format of the rules; RGC employs disjunctions and conjunctions in rule generation whereas RGC-D rules are simple disjunctions of conditions signifying presence of various words. In both the cases, each cluster is comprised of precisely the set of documents that satisfy the corresponding rule. Rules of the latter kind are easy to interpret, whereas the former leads to more accurate clustering. We show that our approaches outperform the unsupervised decision tree approach for rule-generating clustering and also an approach we provide for generating interpretable models for general clusterings, both by significant margins. We empirically show that the purity and f-measure losses to achieve interpretability can be as little as 3 and 5%, respectively using the algorithms presented herein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most traditional data mining algorithms struggle to cope with the sheer scale of data efficiently. In this paper, we propose a general framework to accelerate existing clustering algorithms to cluster large-scale datasets which contain large numbers of attributes, items, and clusters. Our framework makes use of locality sensitive hashing (LSH) to significantly reduce the cluster search space. We also theoretically prove that our framework has a guaranteed error bound in terms of the clustering quality. This framework can be applied to a set of centroid-based clustering algorithms that assign an object to the most similar cluster, and we adopt the popular K-Modes categorical clustering algorithm to present how the framework can be applied. We validated our framework with five synthetic datasets and a real world Yahoo! Answers dataset. The experimental results demonstrate that our framework is able to speed up the existing clustering algorithm between factors of 2 and 6, while maintaining comparable cluster purity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Application of sensor-based technology within activity monitoring systems is becoming a popular technique within the smart environment paradigm. Nevertheless, the use of such an approach generates complex constructs of data, which subsequently requires the use of intricate activity recognition techniques to automatically infer the underlying activity. This paper explores a cluster-based ensemble method as a new solution for the purposes of activity recognition within smart environments. With this approach activities are modelled as collections of clusters built on different subsets of features. A classification process is performed by assigning a new instance to its closest cluster from each collection. Two different sensor data representations have been investigated, namely numeric and binary. Following the evaluation of the proposed methodology it has been demonstrated that the cluster-based ensemble method can be successfully applied as a viable option for activity recognition. Results following exposure to data collected from a range of activities indicated that the ensemble method had the ability to perform with accuracies of 94.2% and 97.5% for numeric and binary data, respectively. These results outperformed a range of single classifiers considered as benchmarks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the most popular techniques of generating classifier ensembles is known as stacking which is based on a meta-learning approach. In this paper, we introduce an alternative method to stacking which is based on cluster analysis. Similar to stacking, instances from a validation set are initially classified by all base classifiers. The output of each classifier is subsequently considered as a new attribute of the instance. Following this, a validation set is divided into clusters according to the new attributes and a small subset of the original attributes of the instances. For each cluster, we find its centroid and calculate its class label. The collection of centroids is considered as a meta-classifier. Experimental results show that the new method outperformed all benchmark methods, namely Majority Voting, Stacking J48, Stacking LR, AdaBoost J48, and Random Forest, in 12 out of 22 data sets. The proposed method has two advantageous properties: it is very robust to relatively small training sets and it can be applied in semi-supervised learning problems. We provide a theoretical investigation regarding the proposed method. This demonstrates that for the method to be successful, the base classifiers applied in the ensemble should have greater than 50% accuracy levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The past decade had witnessed an unprecedented growth in the amount of available digital content, and its volume is expected to continue to grow the next few years. Unstructured text data generated from web and enterprise sources form a large fraction of such content. Many of these contain large volumes of reusable data such as solutions to frequently occurring problems, and general know-how that may be reused in appropriate contexts. In this work, we address issues around leveraging unstructured text data from sources as diverse as the web and the enterprise within the Case-based Reasoning framework. Case-based Reasoning (CBR) provides a framework and methodology for systematic reuse of historical knowledge that is available in the form of problemsolution
pairs, in solving new problems. Here, we consider possibilities of enhancing Textual CBR systems under three main themes: procurement, maintenance and retrieval. We adapt and build upon the stateof-the-art techniques from data mining and natural language processing in addressing various challenges therein. Under procurement, we investigate the problem of extracting cases (i.e., problem-solution pairs) from data sources such as incident/experience
reports. We develop case-base maintenance methods specifically tuned to text targeted towards retaining solutions such that the utility of the filtered case base in solving new problems is maximized. Further, we address the problem of query suggestions for textual case-bases and show that exploiting the problem-solution partition can enhance retrieval effectiveness by prioritizing more useful query suggestions. Additionally, we illustrate interpretable clustering as a tool to drill-down to domain specific text collections (since CBR systems are usually very domain specific) and develop techniques for improved similarity assessment in social media sources such as microblogs. Through extensive empirical evaluations, we illustrate the improvements that we are able to
achieve over the state-of-the-art methods for the respective tasks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To evaluate the hypothesis that changes in nutritional status could be partly responsible for observed increases in myopia prevalence among Chinese children. DESIGN: Cross-sectional cohort study. METHODS: Rural Chinese secondary school children participating in a study of interventions to promote spectacle use were randomly sampled (20% of children with uncorrected vision >6/12 bilaterally, and 100% of remaining children) and underwent cycloplegic refraction with subjective refinement and measurement of height and weight. Stunting was defined according to the World Health Organization standard population. RESULTS: Among 3226 children in the sample, 2905 (90.0%) took part. Among 1477 children undergoing refraction, 1371 (92.8%) had height and weight measurements. These children had a mean age of 14.5 +/- 1.4 years, 59.8% were girls, and mean spherical equivalent refraction was -1.93 +/- 1.82 diopters. Stunting was present in 87 children (6.4%). While height was inversely associated with refractive error (RE) (taller children were more myopic) among boys (r = -0.147, P = .001), this disappeared when adjusting for age, and no such association was observed among girls. Neither girls nor boys with stunting differed significantly in refraction from children without stunting, and neither stunting nor height was associated with RE when adjusting for age, height, and parental education. The power of this study to have detected a 0.75 diopters difference in RE between children with and without stunting was 0.96. CONCLUSION: Results from this cross-sectional study are not consistent with the hypothesis that nutritional status is a determinant of RE in this setting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Social networks generally display a positively skewed degree distribution and higher values for clustering coefficient and degree assortativity than would be expected from the degree sequence. For some types of simulation studies, these properties need to be varied in the artificial networks over which simulations are to be conducted. Various algorithms to generate networks have been described in the literature but their ability to control all three of these network properties is limited. We introduce a spatially constructed algorithm that generates networks with constrained but arbitrary degree distribution, clustering coefficient and assortativity. Both a general approach and specific implementation are presented. The specific implementation is validated and used to generate networks with a constrained but broad range of property values. © Copyright JASSS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nos últimos anos temos vindo a assistir a uma mudança na forma como a informação é disponibilizada online. O surgimento da web para todos possibilitou a fácil edição, disponibilização e partilha da informação gerando um considerável aumento da mesma. Rapidamente surgiram sistemas que permitem a coleção e partilha dessa informação, que para além de possibilitarem a coleção dos recursos também permitem que os utilizadores a descrevam utilizando tags ou comentários. A organização automática dessa informação é um dos maiores desafios no contexto da web atual. Apesar de existirem vários algoritmos de clustering, o compromisso entre a eficácia (formação de grupos que fazem sentido) e a eficiência (execução em tempo aceitável) é difícil de encontrar. Neste sentido, esta investigação tem por problemática aferir se um sistema de agrupamento automático de documentos, melhora a sua eficácia quando se integra um sistema de classificação social. Analisámos e discutimos dois métodos baseados no algoritmo k-means para o clustering de documentos e que possibilitam a integração do tagging social nesse processo. O primeiro permite a integração das tags diretamente no Vector Space Model e o segundo propõe a integração das tags para a seleção das sementes iniciais. O primeiro método permite que as tags sejam pesadas em função da sua ocorrência no documento através do parâmetro Social Slider. Este método foi criado tendo por base um modelo de predição que sugere que, quando se utiliza a similaridade dos cossenos, documentos que partilham tags ficam mais próximos enquanto que, no caso de não partilharem, ficam mais distantes. O segundo método deu origem a um algoritmo que denominamos k-C. Este para além de permitir a seleção inicial das sementes através de uma rede de tags também altera a forma como os novos centróides em cada iteração são calculados. A alteração ao cálculo dos centróides teve em consideração uma reflexão sobre a utilização da distância euclidiana e similaridade dos cossenos no algoritmo de clustering k-means. No contexto da avaliação dos algoritmos foram propostos dois algoritmos, o algoritmo da “Ground truth automática” e o algoritmo MCI. O primeiro permite a deteção da estrutura dos dados, caso seja desconhecida, e o segundo é uma medida de avaliação interna baseada na similaridade dos cossenos entre o documento mais próximo de cada documento. A análise de resultados preliminares sugere que a utilização do primeiro método de integração das tags no VSM tem mais impacto no algoritmo k-means do que no algoritmo k-C. Além disso, os resultados obtidos evidenciam que não existe correlação entre a escolha do parâmetro SS e a qualidade dos clusters. Neste sentido, os restantes testes foram conduzidos utilizando apenas o algoritmo k-C (sem integração de tags no VSM), sendo que os resultados obtidos indicam que a utilização deste algoritmo tende a gerar clusters mais eficazes.