954 resultados para global heading changes


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Der Globale Wandel ist im Begriff, den Tourismus zu verändern. Die Wechselwirkung von Tourismus und Klimawandel sind beidseitiger Art. Die vorliegende Arbeit zeigt Möglichkeiten der Adaption und einen wandelbaren Fremdenverkehr. Eine Übersicht der gängigen Tourismusmodelle stellt den Stand der Forschung dar. Der Fremdenverkehr ist durch drei Faktoren massiv geprägt: Die Nachfrage und Motivation, die Reisemittler und Veranstalter sowie das Destinationsangebot. Bei der Motivation wirken Motiv und Anreiz Motivationspsychologisch betrachtet auf die Reiseentscheidung deren Grundlage verarbeitete Informationen sind. Reisemittler und Veranstalter haben einen großen Einfluss auf Entscheidungsprozesse. Neue IuK Technologien haben deren Arbeit grundlegend verändert. Das Tourismusangebot wird stark durch die naturräumlichen Gegebenheiten sowie das politische System bestimmt. Überlebenswichtig für die Destination ist die evolutionstheoretisch etrachtete Fitnessmaximierung also Adaption und Wandel, um sich an geänderte Rahmenbedingungen anpassen zu können. Gerade im Bereich des Klimawandels müssen Maßnahmen ergriffen werden. Aber auch die Marktsättigung gerade in Verbindung mit der aktuellen Finanzkrise wirkt besonders schwer auf die Destination. Eine hohes Innovationsvermögen, Trendscanning und der Zusammenschluss in flexiblen Netzwerkclustern können einen Kundenmehrwert erzeugen. Die Fitnessmaximierung ist somit Überlebensziel der Destination und führt zur Kundenzufriedenheit die im Sättigungsmarkt alleinig Wachstum generieren kann.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vegetation-cycles are of general interest for many applications. Be it for harvest-predictions, global monitoring of climate-change or as input to atmospheric models.rnrnCommon Vegetation Indices use the fact that for vegetation the difference between Red and Near Infrared reflection is higher than in any other material on Earth’s surface. This gives a very high degree of confidence for vegetation-detection.rnrnThe spectrally resolving data from the GOME and SCIAMACHY satellite-instrumentsrnprovide the chance to analyse finer spectral features throughout the Red and Near Infrared spectrum using Differential Optical Absorption Spectroscopy (DOAS). Although originally developed to retrieve information on atmospheric trace gases, we use it to gain information on vegetation. Another advantage is that this method automatically corrects for changes in the atmosphere. This renders the vegetation-information easily comparable over long time-spans.rnThe first results using previously available reference spectra were encouraging, but also indicated substantial limitations of the available reflectance spectra of vegetation. This was the motivation to create new and more suitable vegetation reference spectra within this thesis.rnThe set of reference spectra obtained is unique in its extent and also with respect to its spectral resolution and the quality of the spectral calibration. For the first time, this allowed a comprehensive investigation of the high-frequency spectral structures of vegetation reflectance and of their dependence on the viewing geometry.rnrnThe results indicate that high-frequency reflectance from vegetation is very complex and highly variable. While this is an interesting finding in itself, it also complicates the application of the obtained reference spectra to the spectral analysis of satellite observations.rnrnThe new set of vegetation reference spectra created in this thesis opens new perspectives for research. Besides refined satellite analyses, these spectra might also be used for applications on other platforms such as aircraft. First promising studies have been presented in this thesis, but the full potential for the remote sensing of vegetation from satellite (or aircraft) could bernfurther exploited in future studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Urban centers significantly contribute to anthropogenic air pollution, although they cover only a minor fraction of the Earth's land surface. Since the worldwide degree of urbanization is steadily increasing, the anthropogenic contribution to air pollution from urban centers is expected to become more substantial in future air quality assessments. The main objective of this thesis was to obtain a more profound insight in the dispersion and the deposition of aerosol particles from 46 individual major population centers (MPCs) as well as the regional and global influence on the atmospheric distribution of several aerosol types. For the first time, this was assessed in one model framework, for which the global model EMAC was applied with different representations of aerosol particles. First, in an approach with passive tracers and a setup in which the results depend only on the source location and the size and the solubility of the tracers, several metrics and a regional climate classification were used to quantify the major outflow pathways, both vertically and horizontally, and to compare the balance between pollution export away from and pollution build-up around the source points. Then in a more comprehensive approach, the anthropogenic emissions of key trace species were changed at the MPC locations to determine the cumulative impact of the MPC emissions on the atmospheric aerosol burdens of black carbon, particulate organic matter, sulfate, and nitrate. Ten different mono-modal passive aerosol tracers were continuously released at the same constant rate at each emission point. The results clearly showed that on average about five times more mass is advected quasi-horizontally at low levels than exported into the upper troposphere. The strength of the low-level export is mainly determined by the location of the source, while the vertical transport is mainly governed by the lifting potential and the solubility of the tracers. Similar to insoluble gas phase tracers, the low-level export of aerosol tracers is strongest at middle and high latitudes, while the regions of strongest vertical export differ between aerosol (temperate winter dry) and gas phase (tropics) tracers. The emitted mass fraction that is kept around MPCs is largest in regions where aerosol tracers have short lifetimes; this mass is also critical for assessing the impact on humans. However, the number of people who live in a strongly polluted region around urban centers depends more on the population density than on the size of the area which is affected by strong air pollution. Another major result was that fine aerosol particles (diameters smaller than 2.5 micrometer) from MPCs undergo substantial long-range transport, with about half of the emitted mass being deposited beyond 1000 km away from the source. In contrast to this diluted remote deposition, there are areas around the MPCs which experience high deposition rates, especially in regions which are frequently affected by heavy precipitation or are situated in poorly ventilated locations. Moreover, most MPC aerosol emissions are removed over land surfaces. In particular, forests experience more deposition from MPC pollutants than other land ecosystems. In addition, it was found that the generic treatment of aerosols has no substantial influence on the major conclusions drawn in this thesis. Moreover, in the more comprehensive approach, it was found that emissions of black carbon, particulate organic matter, sulfur dioxide, and nitrogen oxides from MPCs influence the atmospheric burden of various aerosol types very differently, with impacts generally being larger for secondary species, sulfate and nitrate, than for primary species, black carbon and particulate organic matter. While the changes in the burdens of sulfate, black carbon, and particulate organic matter show an almost linear response for changes in the emission strength, the formation of nitrate was found to be contingent upon many more factors, e.g., the abundance of sulfuric acid, than only upon the strength of the nitrogen oxide emissions. The generic tracer experiments were further extended to conduct the first risk assessment to obtain the cumulative risk of contamination from multiple nuclear reactor accidents on the global scale. For this, many factors had to be taken into account: the probability of major accidents, the cumulative deposition field of the radionuclide cesium-137, and a threshold value that defines contamination. By collecting the necessary data and after accounting for uncertainties, it was found that the risk is highest in western Europe, the eastern US, and in Japan, where on average contamination by major accidents is expected about every 50 years.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Schizophrenia has been postulated to involve impaired neuronal cooperation in large-scale neural networks, including cortico-cortical circuitry. Alterations in gamma band oscillations have attracted a great deal of interest as they appear to represent a pathophysiological process of cortical dysfunction in schizophrenia. Gamma band oscillations reflect local cortical activities, and the synchronization of these activities among spatially distributed cortical areas has been suggested to play a central role in the formation of networks. To assess global coordination across spatially distributed brain regions, Omega complexity (OC) in multichannel EEG was proposed. Using OC, we investigated global coordination of resting-state EEG activities in both gamma (30–50 Hz) and below-gamma (1.5–30 Hz) bands in drug-naïve patients with schizophrenia and investigated the effects of neuroleptic treatment. We found that gamma band OC was significantly higher in drug-naïve patients with schizophrenia compared to control subjects and that a right frontal electrode (F3) contributed significantly to the higher OC. After neuroleptic treatment, reductions in the contribution of frontal electrodes to global OC in both bands correlated with the improvement of schizophrenia symptomatology. The present study suggests that frontal brain processes in schizophrenia were less coordinated with activity in the remaining brain. In addition, beneficial effects of neuroleptic treatment were accompanied by improvement of brain coordination predominantly due to changes in frontal regions. Our study provides new evidence of improper intrinsic brain integration in schizophrenia by investigating the resting-state gamma band activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Natural methane (CH4) emissions from wet ecosystems are an important part of today's global CH4 budget. Climate affects the exchange of CH4 between ecosystems and the atmosphere by influencing CH4 production, oxidation, and transport in the soil. The net CH4 exchange depends on ecosystem hydrology, soil and vegetation characteristics. Here, the LPJ-WHyMe global dynamical vegetation model is used to simulate global net CH4 emissions for different ecosystems: northern peatlands (45°–90° N), naturally inundated wetlands (60° S–45° N), rice agriculture and wet mineral soils. Mineral soils are a potential CH4 sink, but can also be a source with the direction of the net exchange depending on soil moisture content. The geographical and seasonal distributions are evaluated against multi-dimensional atmospheric inversions for 2003–2005, using two independent four-dimensional variational assimilation systems. The atmospheric inversions are constrained by the atmospheric CH4 observations of the SCIAMACHY satellite instrument and global surface networks. Compared to LPJ-WHyMe the inversions result in a~significant reduction in the emissions from northern peatlands and suggest that LPJ-WHyMe maximum annual emissions peak about one month late. The inversions do not put strong constraints on the division of sources between inundated wetlands and wet mineral soils in the tropics. Based on the inversion results we diagnose model parameters in LPJ-WHyMe and simulate the surface exchange of CH4 over the period 1990–2008. Over the whole period we infer an increase of global ecosystem CH4 emissions of +1.11 Tg CH4 yr−1, not considering potential additional changes in wetland extent. The increase in simulated CH4 emissions is attributed to enhanced soil respiration resulting from the observed rise in land temperature and in atmospheric carbon dioxide that were used as input. The long-term decline of the atmospheric CH4 growth rate from 1990 to 2006 cannot be fully explained with the simulated ecosystem emissions. However, these emissions show an increasing trend of +3.62 Tg CH4 yr−1 over 2005–2008 which can partly explain the renewed increase in atmospheric CH4 concentration during recent years.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to infer reactions of treeline and alpine vegetation to climatic change, past vegetation changes are reconstructed on the basis of pollen, macrofossil and charcoal analysis. The sampled sediment cores originate from the small pond Emines, located at the Sanetsch Pass (connecting the Valais and Bern, Switzerland) at an altitude of 2288 m a.s.l. Today's treeline is at ca. 2200 m a.s.l. in the area, though due to special pass (saddle) conditions it is locally depressed to ca. 2060 m a.s.l. Our results reveal that the area around Emines was covered by treeless alpine vegetation during most of the past 12,000 years. Single individuals of Betula, Larix decidua and possibly Pinus cembra occurred during the Holocene. Major centennial to millennial-scale responses of treeline vegetation to climatic changes are evident. However, alpine vegetation composition remained rather stable between 11,500 and 6000 cal. BP, showing that Holocene climatic changes of +/− 1 °C hardly influenced the local vegetation at Emines. The rapid warming of 3–4 °C at the Late Glacial/Holocene transition (11,600 cal. BP) caused significant altitudinal displacements of alpine species that were additionally affected by the rapid upward movement of trees and shrubs. Since the beginning of the Neolithic, vegetation changes at Sanetsch Pass resulted from a combination of climate change and human impact. Anthropogenic fire increase and land-use change combined with a natural change from subcontinental to more oceanic climate during the second half of the Holocene led to the disappearance of P. cembra in the study area, but favoured the occurrence of Picea abies and Alnus viridis. The mid- to late-Holocene decline of Abies alba was primarily a consequence of human impact, since this mesic species should have benefitted from a shift to more oceanic conditions. Future alpine vegetation changes will be a function of the amplitude and rapidity of global warming as well as human land use. Our results imply that alpine vegetation at our treeline pass site was never replaced by forests since the last ice-age. This may change in the future if anticipated climate change will induce upslope migration of trees. The results of this study emphasise the necessity of climate change mitigation in order to prevent biodiversity losses as a consequence of unprecedented community and species displacement in response to climatic change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Climate is an important control on biomass burning, but the sensitivity of fire to changes in temperature and moisture balance has not been quantified. We analyze sedimentary charcoal records to show that the changes in fire regime over the past 21,000 yrs are predictable from changes in regional climates. Analyses of paleo- fire data show that fire increases monotonically with changes in temperature and peaks at intermediate moisture levels, and that temperature is quantitatively the most important driver of changes in biomass burning over the past 21,000 yrs. Given that a similar relationship between climate drivers and fire emerges from analyses of the interannual variability in biomass burning shown by remote-sensing observations of month-by-month burnt area between 1996 and 2008, our results signal a serious cause for concern in the face of continuing global warming.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Besides providing effective analgesia, thoracic epidural anesthesia (TEA) has been shown to decrease perioperative morbidity and mortality. Because of its vasodilatory properties in association with the sympathetic blockade, however, TEA may potentially aggravate cardiovascular dysfunctions resulting from sepsis and systemic inflammatory response syndrome. The objective of the present study was to assess the effects of TEA on hemodynamics, global oxygen transport, and renal function in ovine endotoxemia. After a baseline measurement in healthy sheep (n = 18), Salmonella typhosa endotoxin was centrally infused at incremental doses to induce and maintain a hypotensive-hypodynamic circulation using an established protocol. The animals were then randomly assigned to one of two groups. In the treatment group, continuous TEA was initiated with 0.1 mL.kg of 0.125% bupivacaine at the onset of endotoxemia and maintained with 0.1 mL.kg.h. In the control group, the same amount of isotonic sodium chloride solution was injected through the epidural catheter. In the animals surviving the entire experiment (n = 7 per group), cardiac index and mean arterial pressure decreased in a dose-dependent manner during endotoxin infusion. In the TEA group, neither systemic hemodynamics nor global oxygen transport were impaired beyond the changes caused by endotoxemia itself. Urinary output was increased in the TEA group as compared with the control group (P < 0.05). In this model of endotoxic shock, TEA improved renal perfusion without affecting cardiopulmonary hemodynamics and global oxygen transport.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CASE PRESENTATION: A substance abusing G2P1 mother spontaneously delivered at term an appropriate for gestational age girl. Neonatal seizures appeared at 21 hours and empiric anticonvulsive and antimicrobial treatment was started. At 25 hours, first vesicles appeared. While routine evaluations remained normal, a head CT revealed multifocal ischemic injuries, and a later MRI showed multifocal petechiae and diffusion abnormalities in the corticospinal tracts. The clinical diagnosis of incontinentia pigmenti (stage 1) was secured by histopathology. Follow-up at 13 months showed global developmental delay. DISCUSSION: We discuss the unusually early bilateral, fronto-occipital corticomedullar ischemias (CT day 3). On the MR imaging (day 7) extensive symmetric cerebral corticomedullar destruction and diffusion sequences with corticospinal tracts abnormalities are seen, which then evolve (day 26) to extensive symmetric cerebral destruction. We review the literature, genetics, suspected pathophysiology and possible neonatal manifestation. CONCLUSION: Incontinentia pigmenti is rare and, therefore, diagnosis is frequently delayed. Nevertheless, in the setting of therapy refractory seizures, excluded infections, and linear vesicular rash, a high index of suspicion is needed. This is the first report of simultaneous corticomedullar involvement as early as the third day of life.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The research described in this presentation is part of the Global Observation Research Initiative in Alpine Environments (GLORIA) whose purpose is to establish and maintain a global, long-term observation network in alpine environments. Despite changes in mountaintop-vegetation due to recent climate change being observed throughout the world, trends are not consistent. Moreover, as plant communities can be impacted by several different factors, it is important to be able to separate what is due to climate change and what is due to e.g. changes in grazing pressure (see additional file below).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since it is very toxic and accumulates in organisms, particularly in fish, mercury is a very important pollutant and one of the most studies. And this concern over the toxicity and human health risks of mercury has prompted efforts to regulate anthropogenic emissions. As mercury pollution problem is getting increasingly serious, we are curious about how serious this problem will be in the future. What is more, how the climate change in the future will affect the mercury concentration in the atmosphere. So we investigate the impact of climate change on mercury concentration in the atmosphere. We focus on the comparison between the mercury data for year 2000 and for year 2050. The GEOS-Chem model shows that the mercury concentrations for all tracers (1 to 3), elemental mercury (Hg(0)), divalent mercury (Hg(II)) and primary particulate mercury (Hg(P)) have differences between 2000 and 2050 in most regions over the world. From the model results, we can see the climate change from 2000 to 2050 would decrease Hg(0) surface concentration in most of the world. The driving factors of Hg(0) surface concentration changes are natural emissions(ocean and vegetation) and the transformation reactions between Hg(0) and Hg(II). The climate change from 2000 to 2050 would increase Hg(II) surface concentration in most of mid-latitude continental parts of the world while decreasing Hg(II) surface concentration in most of high-latitude part of the world. The driving factors of Hg(II) surface concentration changes is deposition amount change (majorly wet deposition) from 2000 to 2050 and the transformation reactions between Hg(0) and Hg(II). Climate change would increase Hg(P) concentration in most of mid-latitude area of the world and meanwhile decrease Hg(P) concentration in most of high-latitude regions of the world. For the Hg(P) concentration changes, the major driving factor is the deposition amount change (mainly wet deposition) from 2000 to 2050.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Humankind today is challenged by numerous threats brought about by global change. Climate has been and is being modified by human activities, which calls for mitigation and adaptation measures at an unprecedented scale. Natural resources have been degraded by human development by means of land cover and land use changes, for which protective and restoration measures have to be taken by land users and governments in most countries of the North and South. Low levels of economic development and insufficient policies in most developing countries have led to widespread poverty, which affects nearly half of the world’s population and directly threatens almost one billion people. Finally, uncontrolled economic growth has increased disparities between and within populations and has led to widespread environmental problems in many nations. Generating and sharing knowledge is a key to addressing such global challenges. Knowledge can be used to develop the best solutions and to avoid or repair threats. Research partnerships have proven to be suitable means to bridge the divides and disparities between knowledge societies and developing countries, thereby reducing gaps. Research partnerships are tools for further capacity development and thereby lead to societal empowerment. Institutional settings allowing for research partnerships are needed both in the North and the South, so that the different networks can work together in a long-term enabling environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The marine aragonite cycle has been included in the global biogeochemical model PISCES to study the role of aragonite in shallow water CaCO3 dissolution. Aragonite production is parameterized as a function of mesozooplankton biomass and aragonite saturation state of ambient waters. Observation-based estimates of marine carbonate production and dissolution are well reproduced by the model and about 60% of the combined CaCO3 water column dissolution from aragonite and calcite is simulated above 2000 m. In contrast, a calcite-only version yields a much smaller fraction. This suggests that the aragonite cycle should be included in models for a realistic representation of CaCO3 dissolution and alkalinity. For the SRES A2 CO2 scenario, production rates of aragonite are projected to notably decrease after 2050. By the end of this century, global aragonite production is reduced by 29% and total CaCO3 production by 19% relative to pre-industrial. Geographically, the effect from increasing atmospheric CO2, and the subsequent reduction in saturation state, is largest in the subpolar and polar areas where the modeled aragonite production is projected to decrease by 65% until 2100.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocean acidification from the uptake of anthropogenic carbon is simulated for the industrial period and IPCC SRES emission scenarios A2 and B1 with a global coupled carbon cycle-climate model. Earlier studies identified seawater saturation state with respect to aragonite, a mineral phase of calcium carbonate, as a key variable governing impacts on corals and other shell-forming organisms. Globally in the A2 scenario, water saturated by more than 300%, considered suitable for coral growth, vanishes by 2070 AD (CO2≈630 ppm), and the ocean volume fraction occupied by saturated water decreases from 42% to 25% over this century. The largest simulated pH changes worldwide occur in Arctic surface waters, where hydrogen ion concentration increases by up to 185% (ΔpH=−0.45). Projected climate change amplifies the decrease in Arctic surface mean saturation and pH by more than 20%, mainly due to freshening and increased carbon uptake in response to sea ice retreat. Modeled saturation compares well with observation-based estimates along an Arctic transect and simulated changes have been corrected for remaining model-data differences in this region. Aragonite undersaturation in Arctic surface waters is projected to occur locally within a decade and to become more widespread as atmospheric CO2 continues to grow. The results imply that surface waters in the Arctic Ocean will become corrosive to aragonite, with potentially large implications for the marine ecosystem, if anthropogenic carbon emissions are not reduced and atmospheric CO2 not kept below 450 ppm.