877 resultados para gastric anti-ulcer activity
Resumo:
Objective. The objective of this study was to evaluate the effect of a calcium hydroxide Ca(OH)(2)-based paste (Calen) associated or not to 0.4% chlorhexidine digluconate (CHX) on RAW 264.7 macrophage cell line culture. Study design. The cell viability (MTT assay), immunostimulating properties (NO dosage), and anti-inflammatory properties (NO, TNF-alpha, and IL-1 alpha dosage) were evaluated after cell exposure to the materials. Data were analyzed statistically by Kruskal-Wallis test at 5% significance level. Results. There was low immunostimulating activity of the Calen paste associated or not to 0.4% CHX in the different materials` concentrations evaluated (P > .05). Anti-inflammatory activity with inhibition of NO and cytokine (TNF-alpha and IL1-alpha) release was observed only with Ca(OH)(2) + CHX at the highest concentration (25 mu g/mL). Conclusion. As the Calen paste associated to 0.4% CHX did not alter cell viability or the immunostimulating and anti-inflammatory properties, the addition of CHX brought no benefits to the Ca(OH)(2)-based paste with regard to the tested parameters. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008;106:e44-e51)
Resumo:
The aim of this study was to evaluate the anti-tumor activity of Amblyomin-X, a serine protease Kunitz-type inhibitor. Amblyomin-X induced tumor mass regression and decreased number of metastatic events in a B16F10 murine melanoma model. Alterations on expression of several genes related to cell cycle were observed when two tumor cell lines were treated with Amblyomin-X. PSMB2, which encodes a proteasome subunit, was differentially expressed, in agreement to inhibition of proteasomal activity in both cell lines. In conclusion, our results indicate that Amblyomin-X selectively acts on tumor cells by inducing apoptotic cell death, possibly by targeting the ubiquitin-proteasome system. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The volatile Constituents of the fresh materials of Hypericum cordatum were isolated by hydrodistillation kind analyzed by CC and GC/MS. The leaves produced 0.04% of a yellowish essential oil and the flowers did not. The main components of the oil were myrcene (40.18%), alpha-pinene (16.40%), and limonene (12%). The antibacterial activities of the oil against Saccharomyces aureus and Escherichia coli and the anti-fungal activities of the oil against the fungi Cladosporium cladosporioides and C. sphaerospemum were evaluated. The oil showed an antibacterial activity against the bacteria S. aureus and anti-fungal activity against the two fungi.
Resumo:
The first naturally occurring angiotensin-converting enzyme (ACE) inhibitors described are pyroglutamyl proline-rich oligopeptides, found in the venom of the viper Bothrops jararaca, and named as bradykinin-potentiating peptides (BPPs). Biochemical and pharmacological properties of these peptides were essential for the development of Captopril, the first active site-directed inhibitor of ACE, currently used for the treatment of human hypertension. However, a number of data have suggested that the pharmacological activity of BPPs could not only be explained by their inhibitory action on enzymatic activity of somatic ACE. In fact, we showed recently that the strong and long-lasting anti-hypertensive effect of BPP-10c [
Resumo:
Polystyrene surfaces were conditioned with surfactin and rhamnolipid biosurfactants and then assessed regarding the attachment of Staphylococcus aureus, Listeria monocytogenes, and Micrococcus lute us. The effect of different temperatures (35, 25, and 4 degrees C) on the anti-adhesive activity was also studied. Microbial adhesion to solvents and contact angle measurements were performed to characterize bacteria and material surfaces. The results showed that surfactin was able to inhibit bacterial adhesion in all the conditions analyzed, giving a 63-66% adhesion reduction in the bacterial strains at 4 degrees C. Rhamnolipid promoted a slight decrease in the attachment of S. aureus. The anti-adhesive activity of surfactin increased with the decrease in temperature, showing that this is an important parameter to be considered in surface conditioning tests. Surfactin showed good potential as an anti-adhesive compound that can be explored to protect surfaces from microbial contamination.
Resumo:
The synthesis, characterization and the anti-Mycobacterium tuberculosis (MTB) activities of three ruthenium complexes containing the 2-pyridinecarboxylic acid anion (picolinate), with formulae cis-[Ru(pic)(dppm)(2)]PF(6) (1), Cis- [Ru(pic)(dppe)(2)]PF(6) (2) and [Ru(pic)(2)(PPh(3))(2)] (3) [pic = 2-pyridinecarboxylate; dppm = bis(diphenylphosphino)methane: dppe = 1,2-bis(diphenylphosphino)ethane; PPh(3) = triphenylphosphine] are reported in this article. The complexes were characterized by elemental analysis, spectroscopic and electrochemical techniques. Their in vitro anti mycobacterial activity was determinated as the Minimum Inhibitory Concentration (MIC) for MTB cell growth, measured by the REMA method. The best MICs were found for complexes (1) and (2), with values of 0.78 and 0.26 mu g/mL, respectively. The results are comparable to or better than ""first line"" or ""second line"" drugs commonly used in the treatment of TB. (C) 2009 Elsevier Masson SAS. All rights reserved.
Resumo:
Several pharmacological properties have been attributed to isolated compounds from mushroom. Recently, have these compounds, especially the polysaccharides derived from mushrooms, modulate the immune system, and its antitumor, antiviral, antibiotic and antiinflammatory activities. This study assesses the possible pharmacological properties of the polysaccharides from Scleroderma nitidum mushroom. The centesimal composition of the tissue showed that this fungus is composed mainly of fibers (35.61%), ash (33.69%) and carbohydrates (25.31%). The chemical analysis of the polysaccharide fraction showed high levels of carbohydrates (94.71%) and low content of protein (5.29%). These polysaccharides are composed of glucose, galactose, mannose and fucose in the following molar ratios 0.156, 0.044, 0.025, 0.066 and the infrared analysis showed a possible polysaccharide-protein complex. The polysaccharides from Scleroderma nitidum showed antioxidant potential with concentration-dependent antioxidant activity compared to ascorbic acid. The analysis scavenging of superoxide radical and inhibition of lipid peroxidation showed that the polysaccharides from S. nitidum have an IC50 of 12.70 mg/ml and EC50 10.4 μg/ml, respectively. The antioxidant activity was confirmed by the presence of reducing potential of these polysaccharides. The effect of these polymers on the inflammatory process was tested using the carrageenan or histamine-induced paw edema model and the sodium thioglycolate or zymosan-induced model. The polysaccharides were effective in reducing edema (73% at 50 mg/kg) and cell infiltrate (37% at 10 mg/kg) in both inflammation models tested. Nitric oxide, a mediator in the inflammatory process, showed a reduction of around 26% at 10 mg/kg of body weight. Analysis of pro- and anti-inflammatory cytokines showed that in the groups treated with polysaccharides from S. nitidum there was an increase in cytokines such as IL-1ra, IL-10, and MIP-1β concomitant with the decrease in INF-γ (75%) and IL-2 (22%). We observed the influence of polysaccharides on the modulation of the expression of nuclear factor κB. Thus, polysaccharides from S. nitidum reduced the expression of NF-κB by up to 64%. The results obtained suggest that NF-κB modulation is one of the possible mechanisms that explain the anti-inflammatory effect of polysaccharides from the fungus S. nitidum.
Resumo:
Proteinases are enzymes distributed widely founded in several organisms and perform many different functions, from maintaining homeostasis to the worsening of some diseases such as cancer, autoimmune diseases and infections. The proteins responsible of controlling the action of these enzymes are the inhibitors, that are classified based on their target proteases and are founded since simple organisms, such as bacteria, to higher organisms, such as larger plants and mammals. Plant proteinase inhibitors act by reducing or inactivating the activity of target proteases, thus, these proteins have been studied as potential tools in the treatment of diseases related to protease activities. In this context, an inhibitor of chymotrypsin from Erythrina velutina, called EvCI was previously purified and it was observed that this protein plays in vitro anticoagulant activity and anti-inflammatory activity in in vivo model. Aiming to reduce the environmental impact caused by the purification EvCI in high amounts and to facilitate the process of obtaining this protein, the recombinant chymotrypsin inhibitor from Eryhrina velutina was produced after cloning and expression in Escherichia coli. The bacteria were grown in LB medium and after induction of the expression this material was subjected to procedures for cell lysis and the product was applied on Nickel-affinity column. The proteins adsorbed were digested by thrombin and applied on Chymotrypsin-Sepharose affinity column, obtaining the purified inhibitor, named recEvCI. After electrophoresis, the recombinant inhibitor showed an approximately molecular mass of 17 kDa, and reduced the chymotrypsin and elastase activities in vitro. The recombinant inhibitor was sequenced and was found similar amino acids residues when compared to other inhibitors deposited in the database, with some modifications. recEvCI showed high stability under pH variations and reducing conditions, maintaining its activity around 80%. This protein increased the blood coagulation time in vitro by acting on the intrinsic pathway and did not show cytotoxicity against strains of mouse 3T3 fibroblasts and RAW 264.7 macrophages. recEvCI showed microbicide activity related to release of nitric oxide and consequently the activation of macrophages, futhermore having proinflammatory effects assessed by increased release of TNF-α. These results indicate that recEvCI can be biotechnologically used as a new tool in the control of coagulation-related diseases as well as can be an activating agent of the immune system in immunosuppressed individuals
Resumo:
This study examines the physical and chemical composition and the pharmacological effects of brown seaweed FRF 0.8 Lobophora variegata. Fractionation of the crude extract was done with the concentration of 0.8 volumes of acetone, obtaining the FRF 0.8. The physicochemical characterization showed that it was a fucana sulfated. Anti-inflammatory activity was assessed by paw edema model by the high rates of inhibition of the edema and the best results were in the fourth hour after induction (100 ± 1.4% at the dose of 75 mg / kg) and by the strong inhibitory activity of the enzyme myeloperoxidase (91.45% at the dose of 25 mg / kg). The hepataproteção was demonstrated by measurements of enzymatic and metabolic parameters indicative of liver damage, such as bilirubin (reduction in 68.81%, 70.68% and 68.21% for bilirubin total, direct and indirect, respectively at a dose of 75 mg / kg), ALT, AST and γ-GT (decrease of 76.93%, 44.58% and 50% respectively at a dose of 75 mg / kg) by analysis of histological slides of liver tissue, confirming that hepatoprotective effect the polymers of carbohydrates, showing a reduction in tissue damage caused by CCl4 and the inhibition of the enzyme complex of cytochrome P 450 (increasing sleep time in 54.6% and reducing the latency time in 71.43%). The effectiveness of the FRF 0.8 angiogenesis was examined in chorioallantoic membrane (CAM) of fertilized eggs, with the density of capillaries evaluated and scored, showing an effect proangigênico at all concentrations tested FRF (10 mg- 1000 mg). The FRF showed antioxidant activity on free radicals (by inhibiting Superoxide Radical in 55.62 ± 2.10%, Lipid Peroxidation in 100.15 ± 0.01%, Hydroxyl Radical in 41.84 ± 0.001% and 71.47 Peroxide in ± 2.69% at concentration of 0.62 mg / mL). The anticoagulant activity was observed with prolongation of activated partial thromboplastin time (aPTT) at 50 mg (> 240 s), showing that its action occurs in the intrinsic pathway of the coagulation cascade. Thus, our results indicate that these sulfated polysaccharides are an important pharmacological target
Resumo:
Rheumatoid arthritis (RA) is systemic auto imune disorder. It is caracterized by chronic inflammation of joints leading to progressive erosion of cartilage and bone. We investigated the effect of the administration of fucoidan, sulfated polysaccharides, from algae Fucus vesiculosus in the acute (6h) in zymosan-induced arthritis (AZy). Wistar rats (180-230 g) were used for all groups experimental. Non-treated animals received just intraarticular injection of 1 mg the zymosan, control group received intraarticular injection of 50 µL the saline, groups received either fucoidan of Fucus vesiculosus (15, 30, 50 or 70 mg/Kg) or parecoxib (1 mg/Kg) 1 hour after injection of zymosan. After 6 h, the articular exudates were collected for evaluation of the cell influx and nitrite (Griess reaction) release. The sinovial membranes and articular cartilages were excised for histopathological analysis and by determination of the glycosaminoglycan (GAG), respectively. ZyA led to increased NO and cell influx into the joints. Therapeutic administration of the fucoidan or parecoxib did significantly inhibited the cell influx and the synovitis, as compared to non-treated rats (p<0,05), though being able to reduced NO release. Representative agarose gel electrophoresis of the GAGs, the content of condroitin-sulphate was observed during the process. These findings suggest that the fucoidan from Fucus vesiculosus has potential anti-inflammatory activity
Resumo:
The acidic galactan (AG) was obtained by extraction and proteolysis by acetone precipitation of the eggs of the mollusc Pomacea lineata. Its structure was elucidated by a combination of chemical analysis, the intrinsic viscosity and NMR spectroscopy 1D and 2D. Biological aspects of AG were evaluated by in vivo testing of healing and peritonitis induced (anti-inflammatory activity) and in vitro assays of cytotoxicity (MTT). This polymer showed a simple structure without the presence of sulfate and uronic acids in its structure. Its intrinsic viscosity and relative were evaluated at 0.44 ± 0.05 and 1.744± 0.07 dl.g-1. Spectroscopy showed that the AG has a constitution composed predominantly of β-D-galactosis, and β-D-glucosamine-NAcetil that comes in a smaller proportion in chain. The character of this acidic polysaccharide is given by the presence of pyruvate in the molecule, forming a cyclic acetal of six states, located in β-D-galactosis. The involvement of AG in the healing process was evaluated and the histological analysis revealed that there was so early in the process of healing, a great stimulation of macrophages with granuloma formation. Suggesting that AG may have promoted the advance of biological events required for tissue healing. In the trial of the GA-induced peritonitis showed dose dependent, demonstrating the anti-inflammatory effect at concentrations above 20 mg/kg, and confirming its inflammatory character and the concentration of 1mg/kg. In vitro tests used in the GA concentration of 1000 μg/mL showed proliferative activity by stimulating the growth of 3T3 cells, corroborating the findings in vivo and demonstrating the absence of cytotoxic activity
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Kalanchoe brasiliensis Cambess (Crassulaceae), commonly known as saião , coirama branca , folha grossa , is originally from Brazil and commonly found in São Paulo to Bahia, mainly in the coastal zone. Regarding of biological activities, most preclinical studies were found in the literature, mainly about the anti-inflammatory activity of extracts obtained from leaves and / or aerial parts of K. brasiliensis. As regards the chemical constitution, it has been reported mainly the presence of flavonoids in the leaves of the species, but until this moment did not knows which are the active compounds. Although it is a species widely used in traditional medicine in Brazil, there is no monograph about the quality parameters of the plant drug. In this context, this study aims to characterize and quantify the chemical markers of hydroethanolic extract (HE) from the leaves of K. brasiliensis, which can be used in quality control of plant drug and derivatives obtained from this species. The methodology was divided into two parts: i. Phytochemical study: to fractionate, isolate and characterizate of the chemical (s) marker (s) of the HE from the leaves of K. brasiliensis; ii. To Developed validate of analytical method by High Performance Liquid Chromatography (HPLC)-diode array detector (DAD) to quantify the chemical (s) marker (s) of the EH. i. The EH 50% was prepared by turbo extraction method. It was then submitted to liquid-liquid partition, obtaining dichloromethane, n-butanol and ethyl acetate (AcOEt) fractions. The AcOEt fraction was selected to continue the fractionation process, because it has a chemical profile rich in flavonoids. The acOEt fraction was submitted to column chromatography using different systems for obtaining the compound Kb1. To identify this compound, it was submitted to UV analysis ii. For quantitative analysis, the EH was analyzed by HPLC, using different methods. After selecting the most appropriate method, which showed satisfactory resolution and symmetrical peaks, it was validated according to parameters in the RE 899/2003. As result, it was obtained from the AcOEt fraction the compound Kb1 (2.7 mg). Until this moment, the basic nucleus was characterized by UV analysis using shift reagents. The partial chemical structure of the compound Kb1 was identified as a flavonol, containing hydroxyls in 3 , 4 position (ring A), 5 and 7 free (ring B) and a replacement of the C3 hydroxyl by a sugar. As the analysis were performed in the HPLC coupled to a DAD, we observed that the UV spectrum of the major peaks of EH from K. brasiliensis shown similar UV spectrum. According to the literature, it has been reported the presence of patuletin glycosydes derivatives in the leaves of this species. Therefore, it is suggested that the compound Kb1 is glycosylated patuletin derivative. Probably the sugar (s) unit(s) are linked in the C3 in the C ring. . Regarding the development of HPLC analytical method, the system used consists of phase A: water: formic acid (99,7:0,3, v / v) and phase B: methanol: formic acid (99,7:0,3, v / v), elution gradient of 40% B - 58% B in 50 minutes, ccolumn (Hichrom ®) C18 (250x4, 0 mm, 5 μm), flow rate 0.8 mL / min, UV detection at 370 nm, temperature 25 ° C. In the analysis performed with the co-injection of thecompound Kb1 + HE of K. brasiliensis was observed that it is one of the major compounds with a retention time of 12.47 minutes and had a content of 15.3% in EH of leaves from K. brasiliensis. The method proved to be linear, precise, accurate and reproducible. According to these results, it was observed that compound Kb1 can be used as a chemical marker of EH from leaves of K. brasiliensis, to assist in quality control of drug plant and its derivatives