865 resultados para functional groups


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Biologia Animal - IBILCE

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work we report the surface modification of different engineering polymers, such as, polyethylene terephthalate (PET), polyethylene (PE) and polypropylene (PP) by an atmospheric pressure plasma jet (APPJ). It was operated with Ar gas using 10 kV, 37 kHz, sine wave as an excitation source. The aim of this study is to determine the optimal treatment conditions and also to compare the polymer surface modification induced by plasma jet with the one obtained by another atmospheric pressure plasma source the dielectric barrier discharge (DBD). The samples were exposed to the plasma jet effluent using a scanning procedure, which allowed achieving a uniform surface modification. The wettability assessments of all polymers reveal that the treatment leads to reduction of more than 40 degrees in the water contact angle (WCA). Changes in surface composition and chemical bonding were analyzed by x-ray photoelectron spectroscopy (XPS) and Fourier-Transformed Infrared spectroscopy (FTIR) that both detected incorporation of oxygen-related functional groups. Surface morphology of polymer samples was investigated by Atomic Force Microscopy (AFM) and an increase of polymer roughness after the APPJ treatment was found. The plasma-treated polymers exhibited hydrophobic recovery expressed in reduction of the O-content of the surface upon rinsing with water. This process was caused by the dissolution of low molecular weight oxidized materials (LMWOMs) formed on the surface as a result of the plasma exposure. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

QuestionsWe aimed to analyse the effect of fire on flowering in subtropical grasslands, by addressing the following questions: will fire history affect flowering? If yes, do fire feedbacks influence flowering or is it just the removal of above-ground biomass? Are there differences in burned and mowed plots?LocationSubtropical grasslands in Southern Brazil (30 degrees 03S, 51 degrees 07W).MethodsWe established plots in areas with different fire histories: 30d (30 plots: five replicates), 1yr (14 replicates), 3yr (30 plots: five replicates) since the last fire, in experimentally burned and mowed plots (14 replicates each). We counted the number of flowering species, as well as the number of flowering stalks.ResultsGraminoid species flowered in highest numbers 1yr after fire, whilst forbs had more species flowering just after fire, indicating different reproductive strategies in post-fire environments. Mowing was not as efficient as fire in stimulating flowering. Finally, the different functional groups showed different flowering responses to time since last fire and to the different types of management.ConclusionsOur results show fire stimulated flowering. Although mowing can be a good alternative for maintaining plant diversity, our study showed that this practice is not as efficient as fire in stimulating flowering. However, fire season should be noted as a limiting factor to the recovery of C-3 grasses in these subtropical grasslands, and annual burns may be harmful to C-4 grasses, since they delay their flowering to the next post-fire growing season.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fire is a common event in different ecosystems and can both be caused by humans or have natural sources.. In many of these ecosystems, natural fires are an important factor that determines the vegetation. The reduction of tree cover by fire for example, resulted in the evolution of several species-rich ecosystems, dominated by C4 grasses. However, the fire caused by human actions may have greater intensity and lead to negative responses of vegetation, since man changed the fire regime in many parts of the world, such as in the Cerrado. The passage of fire can benefit herbaceous and woody seedlings that cannot compete with the dominant grass layer. It removes the dead biomass and litter (major components of the fuel load), opening up spaces within the grass matrix that allow the establishment of other species. After some time without fire, an increase in shrub cover and decrease herbaceous layer can be observed. One of the major consequences of the absence of fire in savanna and grassland ecosystems is the accumulation of flammable dead biomass (mainly composed of graminoids), which will probably be the fuel load of the next burning thus, fires will be more intense and hotter. Moreover, very frequent burns lead to a reduction in the frequency and density of grasses. Therefore, this study aimed to assess the quantity and quality of biomass in areas with different fire history (fire exclusion for 2 and 7 years) in areas of campo sujo in central Cerrado. Plots (1x1m) were established in both areas and all aboveground biomass of each plot was cut at ground level and put in paper bags in the field. In the laboratory, the material was sorted into live and dead biomass. In addition, live biomass was separated into different functional groups (graminoids, forbs, Vellozia spp, palm and shrubs). The material was oven dried for two days at 80°C and subsequently weighed. In both areas, we found a dominance of graminoid and dead biomass. The area...

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thin polymeric films deposited by plasma are very atractive for many industrial and scientific applications, in areas such as electronics, mechanics, coatings, biomaterials, among others, due to its favorable properties such as good adhesion to the substrate, high crosslinking, nanomectric thickness, homogeneity, etc. In this work, thin films were deposited by plasma immersion ion implantation and deposition technique from a hexamethyldisilazane/argon mixture at different proportions. These films were subjected to several characterizations, such as, contact angle, which presented values near to 100 degrees, surface energy, with values near to 31 mJ/m2, hardness with values between 0.7 and 2.6 GPa, thickness from 100 to 200 nm, refractive index from 1.56 to 1.64, molecular structure presenting the following functional groups in the infrared spectra region: CHx from 2960 to 2900 cm-1; Si-H around 2130 cm-1; CH3 in Si-(CH3)x around 1410 cm-1; CH3 in Si-(CH3)x in 1260 cm-1; N-H around 1180 cm-1; CH2 in Si-CH2-Si bonds around 1025 cm-1; Si-O in Si-O-Si from 1020 to 1100 cm-1; Si-N in Si-H-Si bonds around 940 cm-1; CH3 in Si-(CH3)3 in 850 cm-1; Si-C bonds in Si-(CH3)2 around 800 cm-1; and Si-H in 680 cm-1 . From these characterizations, it was possible to conclude that the concentration of argon or hexamethyldisilazane in the mixture changed the resulting polymer

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)