953 resultados para function estimation
Resumo:
The Queensland University of Technology (QUT) allows the presentation of a thesis for the Degree of Doctor of Philosophy in the format of published or submitted papers, where such papers have been published, accepted or submitted during the period of candidature. This thesis is composed of seven published/submitted papers, of which one has been published, three accepted for publication and the other three are under review. This project is financially supported by an Australian Research Council (ARC) Discovery Grant with the aim of proposing strategies for the performance control of Distributed Generation (DG) system with digital estimation of power system signal parameters. Distributed Generation (DG) has been recently introduced as a new concept for the generation of power and the enhancement of conventionally produced electricity. Global warming issue calls for renewable energy resources in electricity production. Distributed generation based on solar energy (photovoltaic and solar thermal), wind, biomass, mini-hydro along with use of fuel cell and micro turbine will gain substantial momentum in the near future. Technically, DG can be a viable solution for the issue of the integration of renewable or non-conventional energy resources. Basically, DG sources can be connected to local power system through power electronic devices, i.e. inverters or ac-ac converters. The interconnection of DG systems to power system as a compensator or a power source with high quality performance is the main aim of this study. Source and load unbalance, load non-linearity, interharmonic distortion, supply voltage distortion, distortion at the point of common coupling in weak source cases, source current power factor, and synchronism of generated currents or voltages are the issues of concern. The interconnection of DG sources shall be carried out by using power electronics switching devices that inject high frequency components rather than the desired current. Also, noise and harmonic distortions can impact the performance of the control strategies. To be able to mitigate the negative effect of high frequency and harmonic as well as noise distortion to achieve satisfactory performance of DG systems, new methods of signal parameter estimation have been proposed in this thesis. These methods are based on processing the digital samples of power system signals. Thus, proposing advanced techniques for the digital estimation of signal parameters and methods for the generation of DG reference currents using the estimates provided is the targeted scope of this thesis. An introduction to this research – including a description of the research problem, the literature review and an account of the research progress linking the research papers – is presented in Chapter 1. One of the main parameters of a power system signal is its frequency. Phasor Measurement (PM) technique is one of the renowned and advanced techniques used for the estimation of power system frequency. Chapter 2 focuses on an in-depth analysis conducted on the PM technique to reveal its strengths and drawbacks. The analysis will be followed by a new technique proposed to enhance the speed of the PM technique while the input signal is free of even-order harmonics. The other techniques proposed in this thesis as the novel ones will be compared with the PM technique comprehensively studied in Chapter 2. An algorithm based on the concept of Kalman filtering is proposed in Chapter 3. The algorithm is intended to estimate signal parameters like amplitude, frequency and phase angle in the online mode. The Kalman filter is modified to operate on the output signal of a Finite Impulse Response (FIR) filter designed by a plain summation. The frequency estimation unit is independent from the Kalman filter and uses the samples refined by the FIR filter. The frequency estimated is given to the Kalman filter to be used in building the transition matrices. The initial settings for the modified Kalman filter are obtained through a trial and error exercise. Another algorithm again based on the concept of Kalman filtering is proposed in Chapter 4 for the estimation of signal parameters. The Kalman filter is also modified to operate on the output signal of the same FIR filter explained above. Nevertheless, the frequency estimation unit, unlike the one proposed in Chapter 3, is not segregated and it interacts with the Kalman filter. The frequency estimated is given to the Kalman filter and other parameters such as the amplitudes and phase angles estimated by the Kalman filter is taken to the frequency estimation unit. Chapter 5 proposes another algorithm based on the concept of Kalman filtering. This time, the state parameters are obtained through matrix arrangements where the noise level is reduced on the sample vector. The purified state vector is used to obtain a new measurement vector for a basic Kalman filter applied. The Kalman filter used has similar structure to a basic Kalman filter except the initial settings are computed through an extensive math-work with regards to the matrix arrangement utilized. Chapter 6 proposes another algorithm based on the concept of Kalman filtering similar to that of Chapter 3. However, this time the initial settings required for the better performance of the modified Kalman filter are calculated instead of being guessed by trial and error exercises. The simulations results for the parameters of signal estimated are enhanced due to the correct settings applied. Moreover, an enhanced Least Error Square (LES) technique is proposed to take on the estimation when a critical transient is detected in the input signal. In fact, some large, sudden changes in the parameters of the signal at these critical transients are not very well tracked by Kalman filtering. However, the proposed LES technique is found to be much faster in tracking these changes. Therefore, an appropriate combination of the LES and modified Kalman filtering is proposed in Chapter 6. Also, this time the ability of the proposed algorithm is verified on the real data obtained from a prototype test object. Chapter 7 proposes the other algorithm based on the concept of Kalman filtering similar to those of Chapter 3 and 6. However, this time an optimal digital filter is designed instead of the simple summation FIR filter. New initial settings for the modified Kalman filter are calculated based on the coefficients of the digital filter applied. Also, the ability of the proposed algorithm is verified on the real data obtained from a prototype test object. Chapter 8 uses the estimation algorithm proposed in Chapter 7 for the interconnection scheme of a DG to power network. Robust estimates of the signal amplitudes and phase angles obtained by the estimation approach are used in the reference generation of the compensation scheme. Several simulation tests provided in this chapter show that the proposed scheme can very well handle the source and load unbalance, load non-linearity, interharmonic distortion, supply voltage distortion, and synchronism of generated currents or voltages. The purposed compensation scheme also prevents distortion in voltage at the point of common coupling in weak source cases, balances the source currents, and makes the supply side power factor a desired value.
Resumo:
This paper describes modelling, estimation and control of the horizontal translational motion of an open-source and cost effective quadcopter — the MikroKopter. We determine the dynamics of its roll and pitch attitude controller, system latencies, and the units associated with the values exchanged with the vehicle over its serial port. Using this we create a horizontal-plane velocity estimator that uses data from the built-in inertial sensors and an onboard laser scanner, and implement translational control using a nested control loop architecture. We present experimental results for the model and estimator, as well as closed-loop positioning.
Resumo:
The research objectives of this thesis were to contribute to Bayesian statistical methodology by contributing to risk assessment statistical methodology, and to spatial and spatio-temporal methodology, by modelling error structures using complex hierarchical models. Specifically, I hoped to consider two applied areas, and use these applications as a springboard for developing new statistical methods as well as undertaking analyses which might give answers to particular applied questions. Thus, this thesis considers a series of models, firstly in the context of risk assessments for recycled water, and secondly in the context of water usage by crops. The research objective was to model error structures using hierarchical models in two problems, namely risk assessment analyses for wastewater, and secondly, in a four dimensional dataset, assessing differences between cropping systems over time and over three spatial dimensions. The aim was to use the simplicity and insight afforded by Bayesian networks to develop appropriate models for risk scenarios, and again to use Bayesian hierarchical models to explore the necessarily complex modelling of four dimensional agricultural data. The specific objectives of the research were to develop a method for the calculation of credible intervals for the point estimates of Bayesian networks; to develop a model structure to incorporate all the experimental uncertainty associated with various constants thereby allowing the calculation of more credible credible intervals for a risk assessment; to model a single day’s data from the agricultural dataset which satisfactorily captured the complexities of the data; to build a model for several days’ data, in order to consider how the full data might be modelled; and finally to build a model for the full four dimensional dataset and to consider the timevarying nature of the contrast of interest, having satisfactorily accounted for possible spatial and temporal autocorrelations. This work forms five papers, two of which have been published, with two submitted, and the final paper still in draft. The first two objectives were met by recasting the risk assessments as directed, acyclic graphs (DAGs). In the first case, we elicited uncertainty for the conditional probabilities needed by the Bayesian net, incorporated these into a corresponding DAG, and used Markov chain Monte Carlo (MCMC) to find credible intervals, for all the scenarios and outcomes of interest. In the second case, we incorporated the experimental data underlying the risk assessment constants into the DAG, and also treated some of that data as needing to be modelled as an ‘errors-invariables’ problem [Fuller, 1987]. This illustrated a simple method for the incorporation of experimental error into risk assessments. In considering one day of the three-dimensional agricultural data, it became clear that geostatistical models or conditional autoregressive (CAR) models over the three dimensions were not the best way to approach the data. Instead CAR models are used with neighbours only in the same depth layer. This gave flexibility to the model, allowing both the spatially structured and non-structured variances to differ at all depths. We call this model the CAR layered model. Given the experimental design, the fixed part of the model could have been modelled as a set of means by treatment and by depth, but doing so allows little insight into how the treatment effects vary with depth. Hence, a number of essentially non-parametric approaches were taken to see the effects of depth on treatment, with the model of choice incorporating an errors-in-variables approach for depth in addition to a non-parametric smooth. The statistical contribution here was the introduction of the CAR layered model, the applied contribution the analysis of moisture over depth and estimation of the contrast of interest together with its credible intervals. These models were fitted using WinBUGS [Lunn et al., 2000]. The work in the fifth paper deals with the fact that with large datasets, the use of WinBUGS becomes more problematic because of its highly correlated term by term updating. In this work, we introduce a Gibbs sampler with block updating for the CAR layered model. The Gibbs sampler was implemented by Chris Strickland using pyMCMC [Strickland, 2010]. This framework is then used to consider five days data, and we show that moisture in the soil for all the various treatments reaches levels particular to each treatment at a depth of 200 cm and thereafter stays constant, albeit with increasing variances with depth. In an analysis across three spatial dimensions and across time, there are many interactions of time and the spatial dimensions to be considered. Hence, we chose to use a daily model and to repeat the analysis at all time points, effectively creating an interaction model of time by the daily model. Such an approach allows great flexibility. However, this approach does not allow insight into the way in which the parameter of interest varies over time. Hence, a two-stage approach was also used, with estimates from the first-stage being analysed as a set of time series. We see this spatio-temporal interaction model as being a useful approach to data measured across three spatial dimensions and time, since it does not assume additivity of the random spatial or temporal effects.
Resumo:
This paper provides fundamental understanding for the use of cumulative plots for travel time estimation on signalized urban networks. Analytical modeling is performed to generate cumulative plots based on the availability of data: a) Case-D, for detector data only; b) Case-DS, for detector data and signal timings; and c) Case-DSS, for detector data, signal timings and saturation flow rate. The empirical study and sensitivity analysis based on simulation experiments have observed the consistency in performance for Case-DS and Case-DSS, whereas, for Case-D the performance is inconsistent. Case-D is sensitive to detection interval and signal timings within the interval. When detection interval is integral multiple of signal cycle then it has low accuracy and low reliability. Whereas, for detection interval around 1.5 times signal cycle both accuracy and reliability are high.
Resumo:
Background: The objective of this study was to scrutinize number line estimation behaviors displayed by children in mathematics classrooms during the first three years of schooling. We extend existing research by not only mapping potential logarithmic-linear shifts but also provide a new perspective by studying in detail the estimation strategies of individual target digits within a number range familiar to children. Methods: Typically developing children (n = 67) from Years 1 – 3 completed a number-to-position numerical estimation task (0-20 number line). Estimation behaviors were first analyzed via logarithmic and linear regression modeling. Subsequently, using an analysis of variance we compared the estimation accuracy of each digit, thus identifying target digits that were estimated with the assistance of arithmetic strategy. Results: Our results further confirm a developmental logarithmic-linear shift when utilizing regression modeling; however, uniquely we have identified that children employ variable strategies when completing numerical estimation, with levels of strategy advancing with development. Conclusion: In terms of the existing cognitive research, this strategy factor highlights the limitations of any regression modeling approach, or alternatively, it could underpin the developmental time course of the logarithmic-linear shift. Future studies need to systematically investigate this relationship and also consider the implications for educational practice.
Resumo:
Bioinformatics involves analyses of biological data such as DNA sequences, microarrays and protein-protein interaction (PPI) networks. Its two main objectives are the identification of genes or proteins and the prediction of their functions. Biological data often contain uncertain and imprecise information. Fuzzy theory provides useful tools to deal with this type of information, hence has played an important role in analyses of biological data. In this thesis, we aim to develop some new fuzzy techniques and apply them on DNA microarrays and PPI networks. We will focus on three problems: (1) clustering of microarrays; (2) identification of disease-associated genes in microarrays; and (3) identification of protein complexes in PPI networks. The first part of the thesis aims to detect, by the fuzzy C-means (FCM) method, clustering structures in DNA microarrays corrupted by noise. Because of the presence of noise, some clustering structures found in random data may not have any biological significance. In this part, we propose to combine the FCM with the empirical mode decomposition (EMD) for clustering microarray data. The purpose of EMD is to reduce, preferably to remove, the effect of noise, resulting in what is known as denoised data. We call this method the fuzzy C-means method with empirical mode decomposition (FCM-EMD). We applied this method on yeast and serum microarrays, and the silhouette values are used for assessment of the quality of clustering. The results indicate that the clustering structures of denoised data are more reasonable, implying that genes have tighter association with their clusters. Furthermore we found that the estimation of the fuzzy parameter m, which is a difficult step, can be avoided to some extent by analysing denoised microarray data. The second part aims to identify disease-associated genes from DNA microarray data which are generated under different conditions, e.g., patients and normal people. We developed a type-2 fuzzy membership (FM) function for identification of diseaseassociated genes. This approach is applied to diabetes and lung cancer data, and a comparison with the original FM test was carried out. Among the ten best-ranked genes of diabetes identified by the type-2 FM test, seven genes have been confirmed as diabetes-associated genes according to gene description information in Gene Bank and the published literature. An additional gene is further identified. Among the ten best-ranked genes identified in lung cancer data, seven are confirmed that they are associated with lung cancer or its treatment. The type-2 FM-d values are significantly different, which makes the identifications more convincing than the original FM test. The third part of the thesis aims to identify protein complexes in large interaction networks. Identification of protein complexes is crucial to understand the principles of cellular organisation and to predict protein functions. In this part, we proposed a novel method which combines the fuzzy clustering method and interaction probability to identify the overlapping and non-overlapping community structures in PPI networks, then to detect protein complexes in these sub-networks. Our method is based on both the fuzzy relation model and the graph model. We applied the method on several PPI networks and compared with a popular protein complex identification method, the clique percolation method. For the same data, we detected more protein complexes. We also applied our method on two social networks. The results showed our method works well for detecting sub-networks and give a reasonable understanding of these communities.
Resumo:
This PhD study examines whether water allocation becomes more productive when it is re-allocated from 'low' to 'high' efficient alternative uses in village irrigation systems (VISs) in Sri Lanka. Reservoir-based agriculture is a collective farming economic activity, which inter-sectoral allocation of water is assumed to be inefficient due to market imperfections and weak user rights. Furthermore, the available literature shows that a „head-tail syndrome. is the most common issue for intra-sectoral water management in „irrigation. agriculture. This research analyses the issue of water allocation by using primary data collected from two surveys of 460 rice farmers and 325 fish farming groups in two administrative districts in Sri Lanka. Technical efficiency estimates are undertaken for both rice farming and culture-based fisheries (CBF) production. The equi-marginal principle is applied for inter and intra-sectoral allocation of water. Welfare benefits of water re-allocation are measured through consumer surplus estimation. Based on these analyses, the overall findings of the thesis can be summarised as follows. The estimated mean technical efficiency (MTE) for rice farming is 73%. For CBF production, the estimated MTE is 33%. The technical efficiency distribution is skewed to the left for rice farming, while it skewed to the right for CBF production. The results show that technical efficiency of rice farming can be improved by formalising transferability of land ownership and, therefore, water user rights by enhancing the institutional capacity of Farmer Organisations (FOs). Other effective tools for improving technical efficiency of CBF production are strengthening group stability of CBF farmers, improving the accessibility of official consultation, and attracting independent investments. Inter-sectoral optimal allocation shows that the estimated inefficient volume of water in rice farming, which can be re-allocated for CBF production, is 32%. With the application of successive policy instruments (e.g., a community transferable quota system and promoting CBF activities), there is potential for a threefold increase in marginal value product (MVP) of total reservoir water in VISs. The existing intra-sectoral inefficient volume of water use in tail-end fields and head-end fields can potentially be removed by reducing water use by 10% and 23% respectively and re-allocating this to middle fields. This re-allocation may enable a twofold increase in MVP of water used in rice farming without reducing the existing rice output, but will require developing irrigation practices to facilitate this re-allocation. Finally, the total productivity of reservoir water can be increased by responsible village level institutions and primary level stakeholders (i.e., co-management) sharing responsibility of water management, while allowing market forces to guide the efficient re-allocation decisions. This PhD has demonstrated that instead of farmers allocating water between uses haphazardly, they can now base their decisions on efficient water use with a view to increasing water productivity. Such an approach, no doubt will enhance farmer incomes and community welfare.
Resumo:
Objective: To comprehensively measure the burden of hepatitis B, liver cirrhosis and liver cancer in Shandong province, using disability-adjusted life years (DALYs) to estimate the disease burden attribute to hepatitis B virus (HBV)infection. Methods: Based on the mortality data of hepatitis B, liver cirrhosis and liver cancer derived from the third National Sampling Retrospective Survey for Causes of Death during 2004 and 2005, the incidence data of hepatitis B and the prevalence and the disability weights of liver cancer gained from the Shandong Cancer Prevalence Sampling Survey in 2007, we calculated the years of life lost (YLLs), years lived with disability (YLDs) and DALYs of three diseases following the procedures developed for the global burden of disease (GBD) study to ensure the comparability. Results: The total burden for hepatitis B, liver cirrhosis and liver cancer were 211 616 (39 377 YLLs and 172 239 YLDs), 16 783 (13 497 YLLs and 3286 YLDs) and 247 795 (240 236 YLLs and 7559 YLDs) DALYs in 2005 respectively, and men were 2.19, 2.36 and 3.16 times as that for women, respectively in Shandong province. The burden for hepatitis B was mainly because of disability (81.39%). However, most burden on liver cirrhosis and liver cancer were due to premature death (80.42% and 96.95%). The burden of each patient related to hepatitis B, liver cirrhosis and liver cancer were 4.8, 13.73 and 11.11 respectively. Conclusion: Hepatitis B, liver cirrhosis and liver cancer caused considerable burden to the people living in Shandong province, indicating that the control of hepatitis B virus infection would bring huge potential benefits.
Resumo:
Objective: To determine the major health related risk factors and provide evidence for policy-making,using health burden analysis on selected factors among general population from Shandong province. Methods: Based on data derived from the Third Death of Cause Sampling Survey in Shandong. Years of life lcrat(YLLs),yearS Iived with disability(YLDs)and disability-adjusted life years(DALYs) were calculated according to the GBD ethodology.Deaths and DALYs attributed to the selected risk factors were than estimated together with the PAF data from GBD 2001 study.The indirect method was employed to estimate the YLDs. Results: 51.09%of the total dearlls and 31.83%of the total DALYs from the Shandong population were resulted from the 19 selected risk factors.High blood pre.ure,smoking,low fruit and vegetable intake,aleohol consumption,indoor smoke from solid fuels,high cholesterol,urban air pollution, physical inactivity,overweight and obesity and unsafe injections in health care settings were identified as the top 10 risk faetors for mortality which together caused 50.21%of the total deaths.Alcohol use,smoking,high blood pressure,Low fruit and vegetable intake, indoor smoke from solid fuels, overweight and obesity,high cholesterol, physical inactivity,urban air pollution and iron-deficiency anemia were proved as the top 10 risk factors related to disease burden and were responsible for 29.04%of the total DALYs. Conclusion: Alcohol use.smoking and high blood pressure were determined as the major risk factors which influencing the health of residents in Shandong. The mortality and burden of disease could be reduced significantly if these major factors were effectively under control.
Resumo:
Discrete Markov random field models provide a natural framework for representing images or spatial datasets. They model the spatial association present while providing a convenient Markovian dependency structure and strong edge-preservation properties. However, parameter estimation for discrete Markov random field models is difficult due to the complex form of the associated normalizing constant for the likelihood function. For large lattices, the reduced dependence approximation to the normalizing constant is based on the concept of performing computationally efficient and feasible forward recursions on smaller sublattices which are then suitably combined to estimate the constant for the whole lattice. We present an efficient computational extension of the forward recursion approach for the autologistic model to lattices that have an irregularly shaped boundary and which may contain regions with no data; these lattices are typical in applications. Consequently, we also extend the reduced dependence approximation to these scenarios enabling us to implement a practical and efficient non-simulation based approach for spatial data analysis within the variational Bayesian framework. The methodology is illustrated through application to simulated data and example images. The supplemental materials include our C++ source code for computing the approximate normalizing constant and simulation studies.
Resumo:
This paper investigates energy saving potential of commercial building by living wall and green façade system using Envelope Thermal Transfer Value (ETTV) equation in Sub-tropical climate of Australia. Energy saving of four commercial buildings was quantified by applying living wall and green façade system to the west facing wall. A field experimental facility, from which temperature data of living wall system was collected, was used to quantify wall temperatures and heat gain under controlled conditions. The experimental parameters were accumulated with extensive data of existing commercial building to quantify energy saving. Based on temperature data of living wall system comprised of Australian native plants, equivalent temperature of living wall system has been computed. Then, shading coefficient of plants in green façade system has been included in mathematical equation and in graphical analysis. To minimize the air-conditioned load of commercial building, therefore to minimize the heat gain of commercial building, an analysis of building heat gain reduction by living wall and green façade system has been performed. Overall, cooling energy performance of commercial building before and after living wall and green façade system application has been examined. The quantified energy saving showed that only living wall system on opaque part of west facing wall can save 8-13 % of cooling energy consumption where as only green façade system on opaque part of west facing wall can save 9.5-18% cooling energy consumption of commercial building. Again, green façade system on fenestration system on west facing wall can save 28-35 % of cooling energy consumption where as combination of both living wall on opaque part of west facing wall and green façade on fenestration system on west facing wall can save 35-40% cooling energy consumption of commercial building in sub-tropical climate of Australia.
Resumo:
Stringhamite CaCuSiO4·H2O is a hydrated calcium copper silicate and is commonly known as a significant ‘healing’ mineral and is potentially a semi-precious jewel. Stringhamite is a neosilicate with Cu2+ in square planar coordination. Vibrational spectroscopy has been used to characterise the molecular structure of stringhamite. The intense sharp Raman band at 956 cm−1 is assigned to the ν1 (A1g) symmetric stretching vibration. Raman bands at 980, 997, 1061 cm−1 are assigned to the ν3 (A2u, B1g) antisymmetric stretching vibrations. Splitting of the ν3 vibrational mode supports the concept that the stringhamite SiO4 tetrahedron is strongly distorted. The intense bands at 505 and 519 cm−1 and at 570 cm−1 are assigned to the ν2 and ν4 vibrational modes. The question arises as to whether the mineral stringhamite can actually function as a healing mineral. An estimation of the solubility product at pH < 5 shows that the cupric ion can be released. The copper ion is a very powerful antibiological agent and thus the mineral stringhamite may well function as a healing mineral.
Resumo:
Prostate cancer is a significant health problem faced by aging men. Currently, diagnostic strategies for the detection of prostate cancer are either unreliable, yielding high numbers of false positive results, or too invasive to be used widely as screening tests. Furthermore, the current therapeutic strategies for the treatment of the disease carry considerable side effects. Although organ confined prostate cancer can be curable, most detectable clinical symptoms occur in advanced disease when primary tumour cells have metastasised to distant sites - usually lymph nodes and bone. Many growth factors and steroids assist the continued growth and maintenance of prostatic tumour cells. Of these mitogens, androgens are important in the development of the normal prostate but are also required to sustain the growth of prostate cancer cells in the early stage of the disease. Not only are androgens required in the early stage of disease, but also many other growth factors and hormones interact to cause uncontrolled proliferation of malignant cells. The early, androgen sensitive phase of disease is followed by an androgen insensitive phase, whereby androgens are no longer required to stimulate the growth of the tumour cells. Growth factors such as transforming growth factor and (TGF/), epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), insulin-like growth factors (IGFs), Vitamin D and thyroid hormone have been suggested to be important at this stage of disease. Interestingly, some of the kallikrein family of genes, including prostate specific antigen (PSA), the current serum diagnostic marker for prostate cancer, are regulated by androgens and many of the aforementioned growth factors. The kallikrein gene family is a group of serine proteases that are involved in a diverse range of physiological processes: regulation of local blood flow, angiogenesis, tissue invasion and mitogenesis. The earliest members of the kallikrein gene family (KLK1-KLK3) have been strongly associated with general disease states, such as hypertension, inflammation, pancreatitis and renal disease, but are also linked to various cancers. Recently, this family was extended to include 15 genes (KLK1-15). Several newer members of the kallikrein family have been implicated in the carcinogenesis and tumour metastasis of hormone-dependent cancers such as prostate, breast, endometrial and ovarian cancer. The aims of this project were to investigate the expression of the newly identified kallikrein, KLK4, in benign and malignant prostate tissues, and prostate cancer cell lines. This thesis has demonstrated the elevated expression of KLK4 mRNA transcripts in malignant prostate tissue compared to benign prostates. Additionally, expression of the full length KLK4 transcript was detected in the androgen dependent prostate cancer cell line, LNCaP. Based on the above finding, the LNCaP cell line was chosen to assess the potential regulation of full length KLK4 by androgen, thyroid hormone and epidermal growth factor. KLK4 mRNA and protein was found to be up-regulated by androgen and a combination of androgen and thyroid hormone. Thyroid hormone alone produced no significant change in KLK4 mRNA or protein over the control. Epidermal growth factor treatment also resulted in elevated expression levels of KLK4 mRNA and protein. To assess the potential functional role(s) of KLK4/hK4 in processes associated with tumour progression, full length KLK4 was transfected into PC-3 cells - a prostate cancer cell line originally derived from a secondary bone lesion. The KLK4/hK4 over-expressing cells were assessed for their proliferation, migration, invasion and attachment properties. The KLK4 over-expressing clones exhibited a marked change in morphology, indicative of a more aggressive phenotype. The KLK4 clones were irregularly shaped with compromised adhesion to the growth surface. In contrast, the control cell lines (parent PC-3 and empty vector clones) retained a rounded morphology with obvious cell to cell adhesion, as well as significant adhesion to their growth surface. The KLK4 clones exhibited significantly greater attachment to Collagen I and IV than native PC-3s and empty vector controls. Over a 12 hour period, in comparison to the control cells, the KLK4 clones displayed an increase in migration towards PC-3 native conditioned media, a 3 fold increase towards conditioned media from an osteoblastic cell line (Saos-2) and no change in migration towards conditioned media from neonatal foreskin fibroblast cells or 20% foetal bovine serum. Furthermore, the increase in migration exhibited by the KLK4 clones was partially blocked by the serine protease inhibitor, aprotinin. The data presented in this thesis suggests that KLK4/hK4 is important in prostate carcinogenesis due to its over-expression in malignant prostate tissues, its regulation by hormones and growth factors associated with prostate disease and the functional consequences of over-expression of KLK4/hK4 in the PC-3 cell line. These results indicate that KLK4/hK4 may play an important role in tumour invasion and bone metastasis via increased attachment to the bone matrix protein, Collagen I, and enhanced migration due to soluble factors produced by osteoblast cells. This suggestion is further supported by the morphological changes displayed by the KLK4 over-expressing cells. Overall, this data suggests that KLK4/hK4 should be further studied to more fully investigate the potential value of KLK4/hK4 as a diagnostic/prognostic biomarker or in therapeutic applications.