799 resultados para forward slash story


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we study the information-theoretical security of a downlink multiuser cooperative relaying network with multiple intermediate amplify-and-forward (AF) relays, where there exist multiple eavesdroppers which can overhear the message. To prevent the wiretap and strength the network security, we select one best relay and user pair, so that the selected user can receive the message from the base station assisted by the selected relay. The relay and user selection is performed by maximizing the ratio of the received signal-to-noise ratio (SNR) at the user to the eavesdroppers, which is based on both the main and eavesdropper links. For the considered system, we derive the closed-form expression of the secrecy outage probability, and provide the asymptotic expression in high main-to-eavesdropper ratio (MER) region. From the asymptotic analysis, we can find that the system diversity order is equivalent to the number of relays regardless of the number of users and eavesdroppers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes relay selection in order to increase the physical layer security in multiuser cooperative relay networks with multiple amplify-and-forward (AF) relays, in the presence of multiple eavesdroppers. To strengthen the network security against eavesdropping attack, we present three criteria to select the best relay and user pair. Specifically, criterion I and II study the received signal-to-noise ratio (SNR) at the receivers, and perform the selection by maximizing the SNR ratio of the user to the eavesdroppers. To this end, criterion I relies on both the main and eavesdropper links, while criterion II relies on the main links only. Criterion III is the standard max-min selection criterion,
which maximizes the minimum of the dual-hop channel gains of main links. For the three selection criteria, we examine the system secrecy performance by deriving the analytical expressions for the secrecy outage probability. We also derive the asymptotic analysis for the secrecy outage probability with high main-to eavesdropper ratio (MER). From the asymptotic analysis, an interesting observation is reached: for each criterion, the system diversity order is equivalent to the number of relays regardless of the number of users and eavesdroppers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reducing wafer metrology continues to be a major target in semiconductor manufacturing efficiency initiatives due to it being a high cost, non-value added operation that impacts on cycle-time and throughput. However, metrology cannot be eliminated completely given the important role it plays in process monitoring and advanced process control. To achieve the required manufacturing precision, measurements are typically taken at multiple sites across a wafer. The selection of these sites is usually based on a priori knowledge of wafer failure patterns and spatial variability with additional sites added over time in response to process issues. As a result, it is often the case that in mature processes significant redundancy can exist in wafer measurement plans. This paper proposes a novel methodology based on Forward Selection Component Analysis (FSCA) for analyzing historical metrology data in order to determine the minimum set of wafer sites needed for process monitoring. The paper also introduces a virtual metrology (VM) based approach for reconstructing the complete wafer profile from the optimal sites identified by FSCA. The proposed methodology is tested and validated on a wafer manufacturing metrology dataset. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasingly semiconductor manufacturers are exploring opportunities for virtual metrology (VM) enabled process monitoring and control as a means of reducing non-value added metrology and achieving ever more demanding wafer fabrication tolerances. However, developing robust, reliable and interpretable VM models can be very challenging due to the highly correlated input space often associated with the underpinning data sets. A particularly pertinent example is etch rate prediction of plasma etch processes from multichannel optical emission spectroscopy data. This paper proposes a novel input-clustering based forward stepwise regression methodology for VM model building in such highly correlated input spaces. Max Separation Clustering (MSC) is employed as a pre-processing step to identify a reduced srt of well-conditioned, representative variables that can then be used as inputs to state-of-the-art model building techniques such as Forward Selection Regression (FSR), Ridge regression, LASSO and Forward Selection Ridge Regression (FCRR). The methodology is validated on a benchmark semiconductor plasma etch dataset and the results obtained are compared with those achieved when the state-of-art approaches are applied directly to the data without the MSC pre-processing step. Significant performance improvements are observed when MSC is combined with FSR (13%) and FSRR (8.5%), but not with Ridge Regression (-1%) or LASSO (-32%). The optimal VM results are obtained using the MSC-FSR and MSC-FSRR generated models. © 2012 IEEE.