985 resultados para film exhibition


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the case of metallic ferromagnets there has always been a controversy, i.e. whether the magnetic interaction is itinerant or localized. For example SrRuO3 is known to be an itinerant ferromagnet where the spin-spin interaction is expected to be mean field in nature. However, it is reported to behave like Ising, Heisenberg or mean field by different groups. Despite several theoretical and experimental studies and the importance of strongly correlated systems, the experimental conclusion regarding the type of spin-spin interaction in SrRuO3 is lacking. To resolve this issue, we have investigated the critical behaviour in the vicinity of the paramagnetic-ferromagnetic phase transition using various techniques on polycrystalline as well as (001) oriented SrRuO3 films. Our analysis reveals that the application of a scaling law in the field-cooled magnetization data extracts the value of the critical exponent only when it is measured at H -> 0. To substantiate the actual nature without any ambiguity, the critical behavior is studied across the phase transition using the modified Arrott plot, Kouvel-Fisher plot and M-H isotherms. The critical analysis yields self-consistent beta, gamma and delta values and the spin interaction follows the long-range mean field model. Further the directional dependence of the critical exponent is studied in thin films and it reveals the isotropic nature. It is elucidated that the different experimental protocols followed by different groups are the reason for the ambiguity in determining the critical exponents in SrRuO3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the observation of stable p-type conductivity in B and N co-doped epitaxial ZnO thin films grown by pulsed laser deposition. Films grown at higher oxygen partial pressure (similar to 10(-1) Torr) shows p-type conductivity with a carrier concentration of similar to 3 x 10(16) cm(-3). This p-type conductivity is associated with the significant decrease in defect emission peaks due to the vacancy oxygen (V-O) and Schottky type-I native defects compared to films grown at low oxygen partial pressure (similar to 10(-5) Torr). The p-type conductivity is explained with the help of density functional theory (DFT) calculation considering off-stoichiometric BN1+x in the ZnO lattice. (C) 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss the potential application of high dc voltage sensing using thin-film transistors (TFTs) on flexible substrates. High voltage sensing has potential applications for power transmission instrumentation. For this, we consider a gate metal-substrate-semiconductor architecture for TFTs. In this architecture, the flexible substrate not only provides mechanical support but also plays the role of the gate dielectric of the TFT. Hence, the thickness of the substrate needs to be optimized for maximizing transconductance, minimizing mechanical stress, and minimizing gate leakage currents. We discuss this optimization, and develop n-type and p-type organic TFTs using polyvinyldene fluoride as the substrate-gate insulator. Circuits are also realized to achieve level shifting, amplification, and high drain voltage operation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MnSb films were deposited on porous silicon substrates by physical vapor deposition (PVD) technique. Modulation effects due to the substrate on microstructure and magnetic properties of the MnSb film's were studied by scanning electron microscope (SEM), X-ray diffraction (XRD) and measurements of hysteresis loops. SEM images of the MnSb films indicate that net-like structures were obtained because of the special morphology of the substrates. The net-like MnSb films exhibit some novel magnetic properties different from the unpatterned referenced samples. For example, in the case of net-like morphology, the coercive field is as low as 60 Oe.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growth of highly lattice-mismatched InAs0.3Sb0.7 films on (100) GaAs Substrates by magnetron Sputtering has been investigated and even epitaxial lnAs(0.3)Sb(0.7) films have been successfully obtained. A strong effect of the growth conditions on the film structure was observed, revealing that there was a growth mechanism transition from three-dimensional nucleation growth to epitaxial layer-by-layer growth mode when increasing the substrate temperature. A qualitative explanation for that transition was proposed and the critical conditions for the epitaxial layer-by-layer growth mode were also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Micro-indentation test at scales on the order of sub-micron has shown that the measured hardness increases strongly with decreasing indent depth or indent size, which is frequently referred to as the size effect. Simultaneously, at micron or sub-micron scale, the material microstructure size also has an important influence on the measured hardness. This kind of effect, such as the crystal grain size effect, thin film thickness effect, etc., is called the geometrical effect by here. In the present research, in order to investigate the size effect and the geometrical effect, the micro-indentation experiments are carried out respectively for single crystal copper and aluminum, for polycrystal aluminum, as well as for a thin film/substrate system, Ti/Si3N4. The size effect and geometrical effect are displayed experimentally. Moreover, using strain gradient plasticity theory, the size effect and the geometrical effect are simulated. Through comparing experimental results with simulation results, length-scale parameter appearing in the strain gradient theory for different cases is predicted. Furthermore, the size effect and the geometrical effect are interpreted using the geometrically necessary dislocation concept and the discrete dislocation theory. Member Price: $0; Non-Member Price: $25.00

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since hydration forces become very strong at short range and are particularly important for determining the magnitude of the adhesion between two surfaces or interaction energy, the influences of the hydration force and elastic strain energy due to hydration-induced layering of liquid molecules close to a solid film surface on the stability of a solid film in a solid-on-liquid (SOL) nanostructure are studied in this paper. The liquid of this thin SOL structure is a kind of water solution. Since the surface forces play an important role in the structure, the total free energy change of SOL structures consists of the changes in the bulk elastic energy within the solid film, the surface energy at the solid-liquid interface and the solid-air interface, and highly nonlinear volumetric component associated with interfacial forces. The critical wavelength of one-dimensional undulation, the critical thickness of the solid film, and the critical thickness of the liquid layer are studied, and the stability regions of the solid film have been determined. Emphasis is placed on calculation of critical values, which are the basis of analyzing the stability of the very thin solid film.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In addition to the layer thickness and effective Young’s modulus, the impact of the kinematic assumptions, interfacial condition, in-plane force, boundary conditions, and structure dimensions on the curvature of a film/substrate bilayer is examined. Different models for the analysis of the bilayer curvature are compared. It is demonstrated in our model that the assumption of a uniform curvature is valid only if there is no in-plane force. The effects of boundary conditions and structure dimensions, which are not-fully-included in previous models are shown to be significant. Three different approaches for deriving the curvature of a film/substrate bilayer are presented, compared, and analyzed. A more comprehensive study of the conditions regarding the applicability of Stoney’s formula and modified formulas is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel super-hydrophobic stearic acid (STA) film with a water contact angle of 166° was prepared by chemical adsorption on aluminum wafer coated with polyethyleneimine (PEI) film. The micro-tribological behavior of the super-hydrophobic STA monolayer was compared with that of the polished and PEI-coated Al surfaces. The effect of relative humidity on the adhesion and friction was investigated as well. It was found that the STA monolayer showed decreased friction, while the adhesive force was greatly decreased by increasing the surface roughness of the Al wafer to reduce the contact area between the atomic force microscope (AFM) tip and the sample surface to be tested. Thus the friction and adhesion of the Al wafer was effectively decreased by generating the STA monolayer, which indicated that it could be feasible and rational to prepare a surface with good adhesion resistance and lubricity by properly controlling the surface morphology and the chemical composition. Both the adhesion and friction decreased as the relative humidity was lowered from 65% to 10%, though the decrease extent became insignificant for the STA monolayer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new approach is developed to the fabrication of high-quality three-dimensional macro-porous copper films. A highly-ordered macroporous copper film is successfully produced on a polystyrene sphere (PS) template that has been modified by sodium dodecyl sulfate (SDS). It is shown that this procedure can change a hydrophobic surface of PS template into a hydrophilic surface. The present study is devoted to the influence of the electrolyte solution transport on the nucleation process. It is demonstrated that the permeability of the electrolyte solution in the nanochannels of the PS template plays an important role in the chemical electrodeposition of high-quality macroporous copper film. The permeability is drastically enhanced in our experiment through the surface modi. cation of the PS templates. The method could be used to homogeneously produce a large number of nucleations on a substrate, which is a key factor for the fabrication of the high-quality macroporous copper film.