970 resultados para film deposition
Resumo:
A flow-injection system with a glassy carbon disk electrode modified with Prussian Blue film is proposed for the determination of persulfate in commercial samples of hair bleaching boosters by amperometry. The detection was obtained by chronoamperometric technique and the sample is injected into the electrochemical cell in a wall jet configuration. Potassium chloride at concentration of 0.1 mol L-1 acted as sample carrier at a flow rate of 4.0 mL min-1 and supporting-electrolyte. For 0.025 V (vs. Ag/AgCl) applied voltage, the proposed system handles ca. 160 samples per hour (1.0 10-4 - 1.0 10-3 mol L-1 of persulfate), consuming about 200 μL sample and 11 mg KCl per determination. Typical linear correlations between electrocatalytic current and persulfate concentration was ca. 0.9998. The detection limit is 9.0 10-5 mol L-1 and the calculated amperometric sensibility 3.6 103 μA L mol -1. Relative standard deviation (n =12) of a 1.0 10-4 mol L-1 sample is about 2.2%. The method was applied to persulfate determination in commercial hair-bleaching samples and results are in agreement with those obtained by titrimetry at 95% confidence level and good recoveries (95 - 112%) of spiked samples were found. © 2003 by MDPI.
Resumo:
The electrodeposition of manganese oxide films onto a platinum substrate was investigated by means of in situ ellipsometry. In the thickness range from 0 to 150 nm, the anodic oxide behaves as an Isotropic single layer with optical constants that are independent of thickness. Deviations at higher thickness are explained in terms of anisotropic properties of the film. The electroreduction of thin films (up to ca. 150 nm) in an alkaline electrolyte leads to a decrease in both the refractive index and the extinction coefficient and is accompanied by a thickness increase of ca. 10%. The Mn(IV) to Mn(III) conversion takes place from the oxide/electrolyte interface inwards. © 2004 The Electrochemical Society. All rights reserved.
Resumo:
In this paper, we demonstrate that the intrinsic electric field created by a poly(o-methoxyaniline) (POMA) cushion layer hinders the changes in molecular conformation of poly(p-phenylenevinylene) (PPV) in layer-by-layer with dodecylbenzene sulfonic acid (DBS). This was modeled with density functional theory (DFT) calculations where an energy barrier hampered molecular movements of PPV segments when they were subjected to an electric field comparable to that caused by a charged POMA layer. With restricted changes in molecular conformation, the PPV film exhibited Franck-Condon transitions and the photoexcitation spectra resembled the absorption spectra, in contrast to PPV/DBS films deposited directly on glass, with no POMA cushion. Other effects from the POMA cushion were the reduced number of structural defects, confirmed with Raman spectroscopy, and an enhanced PPV emission at high temperatures (300 K) in comparison with the films on bare glass. The positive effects from the POMA cushion may be exploited for enhanced opto-electronic devices, especially as the intrinsic electric field may assist in separating photoexcited electron-hole pairs in photovoltaic devices. © 2013 American Institute of Physics.
Resumo:
Purpose: The purpose of this study was to evaluate the effect of diamond-like carbon thin films doped and undoped with silver nanoparticles coating poly(methyl methacrylate) (PMMA) on Candida albicans biofilm formation. The control of biofilm formation is important to prevent oral diseases in denture users. Materials and Methods: Forty-five PMMA disks were obtained, finished, cleaned in an ultrasonic bath, and divided into three groups: Gc, no surface coating (control group); Gdlc, coated with diamond-like carbon film; and Gag, coated with diamond-like carbon film doped with silver nanoparticles. The films were deposited using a reactive magnetron sputtering system (physical vapor deposition process). The specimens were characterized by optical profilometry, atomic force microscopy, and Rutherford backscattering spectroscopy analyses that determined differences in chemical composition and morphological structure. Following sterilization of the specimens by γ-ray irradiation, C. albicans (ATCC 18804) biofilms were formed by immersion in 2 ml of Sabouraud dextrose broth inoculated with a standardized fungal suspension. After 24 hours, the number of colony forming units (cfu) per specimen was counted. Data concerning biofilm formation were analyzed using ANOVA and the Tukey test (p < 0.05). Results: C. albicans biofilm formation was significantly influenced by the films (p < 0.00001), reducing the number of cfu, while not affecting the roughness parameters (p > 0.05). The Tukey test showed no significant difference between Gdlc and Gag. Films deposited were extremely thin (∼50 nm). The silver particles presented a diameter between 60 and 120 nm and regular distribution throughout the film surface (to Gag). Conclusion: Diamond-like carbon films, doped or undoped with silver nanoparticles, coating the base of PMMA-based dentures could be an alternative procedure for preventing candidosis in denture users. © 2013 by the American College of Prosthodontists.
Resumo:
Plasma immersion ion implantation (PIII) process is a three dimensional surface modification method that is quite mature and well known to the surface engineering community nowadays, especially to those working in the field of plasma-materials interaction, aiming at both industrial and academic applications. More recently, deposition methods have been added to PIII, the PIII&D, opening possibilities of broader range of applications of these techniques. So, PIII&D is becoming a routine method of surface modification, with the advantage of pushing up the retained dose levels limited by the sputtering due to ion implantation. Therefore, well adherent, thick, three-dimensional films without stress are possible to be achieved, at relatively low cost, using PIII&D. In this paper, we will discuss about a few PIII and PIII&D experiments that have been performed recently to achieve surface improvements in different materials: 1 - high temperature nitrogen PIII in Ti6Al4V alloy in which a deep nitrogen rich treated layer resulted in surface improvements as increase of hardness, corrosion resistance and resistance to wear of the Ti alloy; 2 - nanostructures in ZnO films, obtained by PIII&D of vaporized & ionized Zn source; 3 - combined implantation and deposition of calcium for biomaterial activity of Ti alloy (PIII&D), allowing the growth of hydroxyapatite in a body solution; 4 - magnetron sputtering deposition of Cr that was enhanced by the glow discharge Ar plasma to allow implantation and deposition of Cr on SAE 1070 steel (PIII&D) resulting in surfaces with high resistance to corrosion; and 5 - implantation of nitrogen by ordinary PIII into this Cr film, which improved resistance to corrosion, while keeping the tribological properties as good as for the SAE 1070 steel surface. © 2012 Elsevier B.V.
Resumo:
Diverse amorphous hydrogenated carbon-based films (a-C:H, a-C:H:F, a-C:H:N, a-C:H:Cl and a-C:H:Si:O) were obtained by radiofrequency plasma enhanced chemical vapor deposition (PECVD) and plasma immersion ion implantation and deposition (PIIID). The same precursors were used in the production of each pair of each type of film, such as a-C:H, using both PECVD and PIIID. Optical properties, namely the refractive index, n, absorption coefficient, α, and optical gap, ETauc, of these films were obtained via transmission spectra in the ultraviolet-visible near-infrared range (wavelengths from 300 to 3300 nm). Film hardness, elastic modulus and stiffness were obtained as a function of depth using nano-indentation. Surface energy values were calculated from liquid drop contact angle data. Film roughness and morphology were assessed using atomic force microscopy (AFM). The PIIID films were usually thinner and possessed higher refractive indices than the PECVD films. Determined refractive indices are consistent with literature values for similar types of films. Values of ETauc were increased in the PIIID films compared to the PECVD films. An exception was the a-C:H:Si:O films, for which that obtained by PIIID was thicker and exhibited a decreased ETauc. The mechanical properties - hardness, elastic modulus and stiffness - of films produced by PECVD and PIIID generally present small differences. An interesting effect is the increase in the hardness of a-C:H:Cl films from 1.0 to 3.0 GPa when ion implantation is employed. Surface energy correlates well with surface roughness. The implanted films are usually smoother than those obtained by PECVD. ©2013 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This work aims to obtain plasma thin film composites with hydrophobic/hydrophilic alternated regions, which are useful for the production of miniaturized mixers. These regions were acquired by two different strategies: either the codeposition of TEOS and HFE plasma thin films or the exposition of TEOS plasma films to ultraviolet radiation (UVA and UVC). These films were characterized by several chemical and physical techniques. The refractive indexes vary from 1.4 to 1.7; infrared and photoelectron spectroscopy detect Si-O-Si and CHn species. Silicone-like structures with high or low number of amorphous carbon microparticles and with fluorinated organic clusters were produced. Cluster dimensions were in the 1-5 mm range and they are made of graphite or COF (carbon/oxygen/fluorine) compounds. Scanning electron and optical microscopy showed rough surfaces. Water contact angles were 90º; however, for TEOS films that value changed after 6 hr of UVC exposure. Moreover, after UV exposure, organic polar compounds could be adsorbed in those films and water was not. The passive mixer performance was simulated using the FemLab 3.2® program and was tested with 20 nm thick films on a silicon wafer, showing the capacity of these films to be used in such devices.
Resumo:
The aim of this work was production of tetraethoxysilane (TEOS) plasma polymerized thin films and optimization of their physical-chemical characteristic for sensor development. The films were analyzed using several techniques. It was possible to produce composites (graphite clusters imbibed by silicon oxide film) made from only one reactant (TEOS). Deposition rate can vary significantly, reaching a maximum of 30 nm/min; cluster formation and their size widely depending on deposition parameters. The film surface was hydrophobic but can be wetted by organic compounds, probably due to carbon radicals. These films are good candidates for sensor development.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Tin dioxide (SnO2) thin films doped with Eu3+, are deposited by the sol-gel-dip-coating process on top of GaAs films, which is deposited by resistive evaporation on glass substrate. This heterojunction assembly presents luminescence from the rare-earth ion, unlike the SnO2 deposition directly on a glass substrate, where emissions from the Eu3+ transitions are absent. The Eu3+ transitions are clearly identified and are similar to the observation on SnO2 pressed powder (pellets), thermally treated at much higher temperatures. However, in the form of heterojunction films, the Eu emission comes along a broad band, located at higher energy compared to Eu3+ transitions, which is blue-shifted as the thermal annealing temperature increases. The size of nanocrystallites points toward quantum confinement or electron transfer between oxygen vacancies, originated from the disorder in the material, and trivalent rare-earth ions, which present acceptor-like character in this matrix. This electron transfer may relax for higher temperatures in the case of pellets, and the broad band is eliminated.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)