867 resultados para fiber optics and optical communications


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dilute bismide alloys, containing small fractions of bismuth (Bi), have recently attracted interest due to their potential for applications in a range of semiconductor devices. Experiments have revealed that dilute bismide alloys such as GaBixAs1−x, in which a small fraction x of the atoms in the III-V semiconductor GaAs are replaced by Bi, exhibit a number of unusual and unique properties. For example, the band gap energy (E g) decreases rapidly with increasing Bi composition x, by up to 90 meV per % Bi replacing As in the alloy. This band gap reduction is accompanied by a strong increase in the spin-orbit-splitting energy (ΔSO) with increasing x, and both E g and ΔSO are characterised by strong, composition-dependent bowing. The existence of a ΔSO > E g regime in the GaBixAs1−x alloy has been demonstrated for x ≳10%, a band structure condition which is promising for the development of highly efficient, temperature stable semiconductor lasers that could lead to large energy savings in future optical communication networks. In addition to their potential for specific applications, dilute bismide alloys have also attracted interest from a fundamental perspective due to their unique properties. In this thesis we develop the theory of the electronic and optical properties of dilute bismide alloys. By adopting a multi-scale approach encompassing atomistic calculations of the electronic structure using the semi-empirical tight-binding method, as well as continuum calculations based on the k•p method, we develop a fundamental understanding of this unusual class of semiconductor alloys and identify general material properties which are promising for applications in semiconductor optoelectronic and photovoltaic devices. By performing detailed supercell calculations on both ordered and disordered alloys we explicitly demonstrate that Bi atoms act as isovalent impurities when incorporated in dilute quantities in III-V (In)GaAs(P) materials, strongly perturbing the electronic structure of the valence band. We identify and quantify the causes and consequences of the unusual electronic properties of GaBixAs1−x and related alloys, and our analysis is reinforced throughout by a series of detailed comparisons to the results of experimental measurements. Our k•p models of the band structure of GaBixAs1−x and related alloys, which we derive directly from detailed atomistic calculations, are ideally suited to the study of dilute bismide-based devices. We focus in the latter part of the thesis on calculations of the electronic and optical properties of dilute bismide quantum well lasers. In addition to developing an understanding of the effects of Bi incorporation on the operational characteristics of semiconductor lasers, we also present calculations which have been used explicitly in designing and optimising the first generation of GaBixAs1−x-based devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hybrid OECB (Opto-Electrical Circuit Boards) are expected to make a significant impact in the telecomm switches arena within the next five years, creating optical backplanes with high speed point-to-point optical interconnects. OECB's incorporate short range optical interconnects, and are based on VCSEL (Vertical Cavity Surface Emitting Diode) and PD (Photo Diode) pairs, connected to each other via embedded waveguides in the OECB. The VCSEL device is flip-chip assembled onto an organic substrate with embedded optical waveguides. The performance of the VCSEL device is governed by the thermal, mechanical and optical characteristics of this assembly. During operation, the VCSEL device will heat up and the thermal change together with the CTE mismatch in the materials, will result in potential misalignment between the VCSEL apertures and the waveguide openings in the substrate. Any degree of misalignment will affect the optical performance of the package. This paper will present results from a highly coupled modelling analysis involving thermal, mechanical and optical models. The paper will also present results from an optimisation analysis based on Design of Experiments (DOE).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coherent anti-Stokes Raman scattering (CARS) microscopy has developed rapidly and is opening the door to new types of experiments. This work describes the development of new laser sources for CARS microscopy and their use for different applications. It is specifically focused on multimodal nonlinear optical microscopy—the simultaneous combination of different imaging techniques. This allows us to address a diverse range of applications, such as the study of biomaterials, fluid inclusions, atherosclerosis, hepatitis C infection in cells, and ice formation in cells. For these applications new laser sources are developed that allow for practical multimodal imaging. For example, it is shown that using a single Ti:sapphire oscillator with a photonic crystal fiber, it is possible to develop a versatile multimodal imaging system using optimally chirped laser pulses. This system can perform simultaneous two photon excited fluorescence, second harmonic generation, and CARS microscopy. The versatility of the system is further demonstrated by showing that it is possible to probe different Raman modes using CARS microscopy simply by changing a time delay between the excitation beams. Using optimally chirped pulses also enables further simplification of the laser system required by using a single fiber laser combined with nonlinear optical fibers to perform effective multimodal imaging. While these sources are useful for practical multimodal imaging, it is believed that for further improvements in CARS microscopy sensitivity, new excitation schemes are necessary. This has led to the design of a new, high power, extended cavity oscillator that should be capable of implementing new excitation schemes for CARS microscopy as well as other techniques. Our interest in multimodal imaging has led us to other areas of research as well. For example, a fiber-coupling scheme for signal collection in the forward direction is demonstrated that allows for fluorescence lifetime imaging without significant temporal distortion. Also highlighted is an imaging artifact that is unique to CARS microscopy that can alter image interpretation, especially when using multimodal imaging. By combining expertise in nonlinear optics, laser development, fiber optics, and microscopy, we have developed systems and techniques that will be of benefit for multimodal CARS microscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present (CO)-C-12(1-0) molecular line and BV CCD observations towards 0311-7651: a region in the Magellanic Bridge where cold atomic Hydrogen has previously been detected by Kobulnicky & Dickey: Additionally, BV images of a comparison held 1 degrees to the South were taken. No CO was detected to a limit of similar to 0.06 Kelvin, and the colour-magnitude diagrams show no evidence for a stellar association in either field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present single-dish Arecibo 21-cm H i observations, covering a 0 degrees 675x0 degrees 625 RA-Dec. grid, of the intermediate-velocity cloud (IVC) centred upon the M15 globular cluster. The velocity and positional structure of the IVC gas at V-LSR=70 km s(-1) are investigated; it is found to be clumpy and has a peak surface density N(H i)similar to 8x10(19) cm(- 2). Additionally, we have performed a long H i integration towards HD 203664, a Galactic halo star some 3 degrees1 from M15, in which optical IVC absorption has previously been detected. No H i with a velocity exceeding 60 km s(-1) was found to a brightness temperature limit of 0.05 K. However, additional pointings did detect IVC gas approximately mid-way between HD 203664 and M15. Finally, we present both Arecibo H i pointings and low-resolution spectra in the Ca ii H and K lines towards 15 field stars in the general field towards M15, in an attempt to obtain the distance to the IVC. Intermediate- velocity H i is detected towards seven sightlines. Stellar spectral types are derived for 12 of the sample. Assuming that these stars lie on the main sequence, their distances are estimated to lie in the range 150 less than or equal tod less than or equal to 1350 pc. No Ca ii absorption is observed, either because the IVC is further away than similar to 1350 pc or more likely because the gas along these sightlines is of too low a density to be detected by the current observations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Six challenges are discussed. These are the laser-driven helium atom; the laser-driven hydrogen molecule and hydrogen molecular ion: electron scattering (with ionization) from one-electron atoms; the vibrational and rotational structure of molecules such as H-3(+) and water at their dissociation limits; laser- heated clusters; and quantum degeneracy and Bose-Einstein condensation. The first four concern fundamental few-body systems where use of high-performance computing (HPC) is currently making possible accurate modelling from first principles. This leads to reliable predictions and support for laboratory experiment as well as true understanding of the dynamics. Important aspects of these challenges addressable only via a terascale facility are set out. Such a facility makes the last two challenges in the above list meaningfully accessible for the first time, and the scientific interest together with the prospective role for HPC in these is emphasized.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Absolute configurations of a number of cis-dihydrodiols (cis-1,2-dihydroxy-3,5-cyclohexadienes), synthetically useful products of TDO-catalyzed dihydroxylations of 1,2- and 1,3-disubstituted benzene derivatives, have been determined by a comparison of calculated and experimental CD spectra and optical rotations and by methods involving X-ray crystallography, H-1 NMR spectra of diastereoisomeric derivatives, and by stereochemical correlations. The computations disclosed a significant effect of the substituents on conformational equilibria of cis-dihydrodiols and chiroptical properties of individual conformers. The assigned absolute configurations of cis-dihydrodiols have allowed the validity of a simple predictive model for TDO-catalyzed arene dihydroxylations to be extended.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have determined the absolute configurations of conformationally flexible cis-dihydrodiol metabolites (cis-1,2-dihydroxy-3,5-cyclohexadienes), bearing different substituents (e.g., Br, F, CF3, CN, Me) in 3- and 5-positions, by the method of confrontation of experimental and calculated electronic CD spectra and optical rotations. Convergent results were obtained by both methods in eight out of ten cases. For the difficult cases, where either conformer population and/or chiroptical properties (calculated rotational strengths of the long-wavelength Cotton effect or optical rotations) of contributing conformers remain inconclusive, the absolute configuration could still be correctly assigned based on one of the biased properties (either ECD or optical rotation). This approach appears well-suited for a broad spectrum of conformationally flexible chiral molecules.