876 resultados para feature-based design
Resumo:
The simulation of interest rate derivatives is a powerful tool to face the current market fluctuations. However, the complexity of the financial models and the way they are processed require exorbitant computation times, what is in clear conflict with the need of a processing time as short as possible to operate in the financial market. To shorten the computation time of financial derivatives the use of hardware accelerators becomes a must.
Resumo:
This paper studies feature subset selection in classification using a multiobjective estimation of distribution algorithm. We consider six functions, namely area under ROC curve, sensitivity, specificity, precision, F1 measure and Brier score, for evaluation of feature subsets and as the objectives of the problem. One of the characteristics of these objective functions is the existence of noise in their values that should be appropriately handled during optimization. Our proposed algorithm consists of two major techniques which are specially designed for the feature subset selection problem. The first one is a solution ranking method based on interval values to handle the noise in the objectives of this problem. The second one is a model estimation method for learning a joint probabilistic model of objectives and variables which is used to generate new solutions and advance through the search space. To simplify model estimation, l1 regularized regression is used to select a subset of problem variables before model learning. The proposed algorithm is compared with a well-known ranking method for interval-valued objectives and a standard multiobjective genetic algorithm. Particularly, the effects of the two new techniques are experimentally investigated. The experimental results show that the proposed algorithm is able to obtain comparable or better performance on the tested datasets.
Resumo:
The term "Logic Programming" refers to a variety of computer languages and execution models which are based on the traditional concept of Symbolic Logic. The expressive power of these languages offers promise to be of great assistance in facing the programming challenges of present and future symbolic processing applications in Artificial Intelligence, Knowledge-based systems, and many other areas of computing. The sequential execution speed of logic programs has been greatly improved since the advent of the first interpreters. However, higher inference speeds are still required in order to meet the demands of applications such as those contemplated for next generation computer systems. The execution of logic programs in parallel is currently considered a promising strategy for attaining such inference speeds. Logic Programming in turn appears as a suitable programming paradigm for parallel architectures because of the many opportunities for parallel execution present in the implementation of logic programs. This dissertation presents an efficient parallel execution model for logic programs. The model is described from the source language level down to an "Abstract Machine" level suitable for direct implementation on existing parallel systems or for the design of special purpose parallel architectures. Few assumptions are made at the source language level and therefore the techniques developed and the general Abstract Machine design are applicable to a variety of logic (and also functional) languages. These techniques offer efficient solutions to several areas of parallel Logic Programming implementation previously considered problematic or a source of considerable overhead, such as the detection and handling of variable binding conflicts in AND-Parallelism, the specification of control and management of the execution tree, the treatment of distributed backtracking, and goal scheduling and memory management issues, etc. A parallel Abstract Machine design is offered, specifying data areas, operation, and a suitable instruction set. This design is based on extending to a parallel environment the techniques introduced by the Warren Abstract Machine, which have already made very fast and space efficient sequential systems a reality. Therefore, the model herein presented is capable of retaining sequential execution speed similar to that of high performance sequential systems, while extracting additional gains in speed by efficiently implementing parallel execution. These claims are supported by simulations of the Abstract Machine on sample programs.
Resumo:
We report and correct an error in [Opt. Express 20, 9726–9735 (2012)]. The author list has been modified. All other contents are unchanged.
Resumo:
Current development platforms for designing spoken dialog services feature different kinds of strategies to help designers build, test, and deploy their applications. In general, these platforms are made up of several assistants that handle the different design stages (e.g. definition of the dialog flow, prompt and grammar definition, database connection, or to debug and test the running of the application). In spite of all the advances in this area, in general the process of designing spoken-based dialog services is a time consuming task that needs to be accelerated. In this paper we describe a complete development platform that reduces the design time by using different types of acceleration strategies based on using information from the data model structure and database contents, as well as cumulative information obtained throughout the successive steps in the design. Thanks to these accelerations, the interaction with the platform is simplified and the design is reduced, in most cases, to simple confirmations to the “proposals” that the platform automatically provides at each stage. Different kinds of proposals are available to complete the application flow such as the possibility of selecting which information slots should be requested to the user together, predefined templates for common dialogs, the most probable actions that make up each state defined in the flow, different solutions to solve specific speech-modality problems such as the presentation of the lists of retrieved results after querying the backend database. The platform also includes accelerations for creating speech grammars and prompts, and the SQL queries for accessing the database at runtime. Finally, we will describe the setup and results obtained in a simultaneous summative, subjective and objective evaluations with different designers used to test the usability of the proposed accelerations as well as their contribution to reducing the design time and interaction.
Resumo:
This research proposes a generic methodology for dimensionality reduction upon time-frequency representations applied to the classification of different types of biosignals. The methodology directly deals with the highly redundant and irrelevant data contained in these representations, combining a first stage of irrelevant data removal by variable selection, with a second stage of redundancy reduction using methods based on linear transformations. The study addresses two techniques that provided a similar performance: the first one is based on the selection of a set of the most relevant time?frequency points, whereas the second one selects the most relevant frequency bands. The first methodology needs a lower quantity of components, leading to a lower feature space; but the second improves the capture of the time-varying dynamics of the signal, and therefore provides a more stable performance. In order to evaluate the generalization capabilities of the methodology proposed it has been applied to two types of biosignals with different kinds of non-stationary behaviors: electroencephalographic and phonocardiographic biosignals. Even when these two databases contain samples with different degrees of complexity and a wide variety of characterizing patterns, the results demonstrate a good accuracy for the detection of pathologies, over 98%.The results open the possibility to extrapolate the methodology to the study of other biosignals.
Resumo:
In this paper, the classic oscillator design methods are reviewed, and their strengths and weaknesses are shown. Provisos for avoiding the misuse of classic methods are also proposed. If the required provisos are satisfied, the solutions provided by the classic methods (oscillator start-up linear approximation) will be correct. The provisos verification needs to use the NDF (Network Determinant Function). The use of the NDF or the most suitable RRT (Return Relation Transponse), which is directly related to the NDF, as a tool to analyze oscillators leads to a new oscillator design method. The RRT is the "true" loop-gain of oscillators. The use of the new method is demonstrated with examples. Finally, a comparison of NDF/RRT results with the HB (Harmonic Balance) simulation and practical implementation measurements prove the universal use of the new methods.
Resumo:
Abstract. This paper describes a new and original method for designing oscillators based on the Normalized Determinant Function (NDF) and Return Relations (RRT)- Firstly, a review of the loop-gain method will be performed. The loop-gain method pros, cons and some examples for exploring wrong solutions provided by this method will be shown. This method produces in some cases wrong solutions because some necessary conditions have not been fulfilled. The required necessary conditions to assure a right solution will be described. The necessity of using the NDF or the Transpose Return Relations (RRT), which are related with the True Loop-Gain, to test the additional conditions will be demonstrated. To conclude this paper, the steps for oscillator design and analysis, using the proposed NDF/RRj method, will be presented. The loop-gain wrong solutions will be compared with the NDF/RRj and the accuracy of this method to estimate the oscillation frequency and QL will be demonstrated. Some additional examples of plane reference oscillators (Z/Y/T), will be added and they will be analyzed with the new NDF/RRj proposed method, even these oscillators cannot be analyzed using the classic loop gain method.
Resumo:
A new optical design strategy for rotational aspheres using very few parameters is presented. It consists of using the SMS method to design the aspheres embedded in a system with additional simpler surfaces (such as spheres, parabolas or other conics) and optimizing the free-parameters. Although the SMS surfaces are designed using only meridian rays, skew rays have proven to be well controlled within the optimization. In the end, the SMS surfaces are expanded using Forbes series and then a second optimization process is carried out with these SMS surfaces as a starting point. The method has been applied to a telephoto lens design in the SWIR band, achieving ultra-compact designs with an excellent performance.
Resumo:
Envelope Tracking (ET) and Envelope Elimination and Restoration (EER) are two techniques that have been used as a solution for highly efficient linear RF Power Amplifiers (PA). In both techniques the most important part is a dc-dc converter called envelope amplifier that has to supply the RF PA with variable voltage. Besides high efficiency, its bandwidth is very important as well. Envelope amplifier based on parallel combination of a switching dc-dc converter and a linear regulator is an architecture that is widely used due to its simplicity. In this paper we discuss about theoretical limitations of this architecture regarding its efficiency and we demonstrate two possible way of its implementation. In order to derive the presented conclusions, a theoretical model of envelope amplifier's efficiency has been presented. Additionally, the benefits of the new emerging GaN technology for this application have been shown as well.
Resumo:
In this paper we report the process of designing and building the EYEFLY 1, a real UAS platform which has just performed its maiden flight. For the development of this aircraft, 30 groups of students from successive years at the Escuela Universitaria de Ingeniería Técnica Aeronáutica (EUITA) of the Universidad Politécnica de Madrid (UPM) carried out their compulsory End of Degree Project as a coordinated Project Based learning activity. Our conclusions clearly indicate that Project Based Learning activities can provide a valid complement to more conventional, theoretically-based, teaching methods. The combination of both approaches will allow us to maintain traditional but well-tested methods for providing our students with a sound knowledge of fundamental engineering disciplines and, at the same time, to introduce our students to exciting and relevant engineering situations and sceneries where social and business skills, such as communication skills, team-working or decision-taking, can be put into practice.
Resumo:
The paradigm of ubiquitous computing has become a reference for the design of Smart Spaces. Current trends in Ambient Intelligence are increasingly related to the scope of Internet of Things. This paradigm has the potential to support cost-effective solutions in the fields of telecare, e-health and Ambient Assisted Living. Nevertheless, ubiquitous computing does not provide end users with a role for proactive interactions with the environment. Thus, the deployment of smart health care services at a private space like the home is still unsolved. This PhD dissertation aims to define a person-environment interaction model to foster acceptability and users confidence in private spaces by applying the concept of user-centred security and the human performance model of seven stages of action.
Resumo:
Traumatic Brain Injury -TBI- -1- is defined as an acute event that causes certain damage to areas of the brain. TBI may result in a significant impairment of an individuals physical, cognitive and psychosocial functioning. The main consequence of TBI is a dramatic change in the individuals daily life involving a profound disruption of the family, a loss of future income capacity and an increase of lifetime cost. One of the main challenges of TBI Neuroimaging is to develop robust automated image analysis methods to detect signatures of TBI, such as: hyper-intensity areas, changes in image contrast and in brain shape. The final goal of this research is to develop a method to identify the altered brain structures by automatically detecting landmarks on the image where signal changes and to provide comprehensive information to the clinician about them. These landmarks identify injured structures by co-registering the patient?s image with an atlas where landmarks have been previously detected. The research work has been initiated by identifying brain structures on healthy subjects to validate the proposed method. Later, this method will be used to identify modified structures on TBI imaging studies.
Resumo:
This work proposes design energy spectra in terms of an equivalent velocity, intended for regions with design peak acceleration 0.3 g or higher. These spectra were derived through linear and nonlinear dynamic analyses on a number of selected Turkish strong ground motion records. In the long and mid period ranges the analyses are linear, given the relative insensitivity of the spectra to structural parameters other than the fundamental period; conversely, in the short period range, the spectra are more sensitive to the structural parameters and, hence, nonlinear analyses are required. The selected records are classified in eight groups with respect to soil type (stiff or soft soil), the severity of the earthquake in terms of surface magnitude Ms(Ms≤ 5.5 and Ms> 5.5) and the relevance of the near-source effects (impulsive or vibratory). For each of these groups, median and characteristic spectra are proposed; such levels would respectively correspond to 50 and 95 % percentiles. These spectra have an initial linear growing branch in the short period range, a horizontal branch in the mid period range and a descending branch in the long period range. Empirical criteria for estimating the hysteretic energy from the input energy are suggested. The proposed design spectra are compared with those obtained from other studies.
Resumo:
In this paper, we present our research into self-organizing building algorithms. This idea of self-organization of animal/plants behaviour interests researchers to explore the mechanisms required for this emergent phenomena and try to apply them in other domains. We were able to implement a typical construction algorithm in a 3D simulation environment and reproduce the results of previous research in the area. LSystems, morphogenetic programming and wasp nest building are explained in order to understand self-organizing models. We proposed Grammatical swarm as a good tool to optimize building structures.