948 resultados para extraction and separation techniques
Sensitive headspace gas chromatography analysis of free and conjugated 1-methoxy-2-propanol in urine
Resumo:
Glycol ethers still continue to be a workplace hazard due to their important use on an industrial scale. Currently, chronic occupational exposures to low levels of xenobiotics become increasingly relevant. Thus, sensitive analytical methods for detecting biomarkers of exposure are of interest in the field of occupational exposure assessment. 1-Methoxy-2-propanol (1M2P) is one of the dominant glycol ethers and the unmetabolized urinary fraction has been identified to be a good biological indicator of exposure. An existing analytical method including a solid-phase extraction and derivatization before GC/FID analysis is available but presents some disadvantages. We present here an alternative method for the determination of urinary 1M2P based on the headspace gas chromatography technique. We determined the 1M2P values by the direct headspace method for 47 samples that had previously been assayed by the solid-phase extraction and derivatization gas chromatography procedure. An inter-method comparison based on a Bland-Altman analysis showed that both techniques can be used interchangeably. The alternative method showed a tenfold lower limit of detection (0.1 mg/L) as well as good accuracy and precision which were determined by several urinary 1M2P analyses carried out on a series of urine samples obtained from a human volunteer study. The within- and between-run precisions were generally about 10%, which corresponds to the usual injection variability. We observed that the differences between the results obtained with both methods are not clinically relevant in comparison to the current biological exposure index of urinary 1M2P. Accordingly, the headspace gas chromatography technique turned out to be a more sensitive, accurate, and simple method for the determination of urinary 1M2P.[Authors]
Resumo:
BACKGROUND Phytopharmacological studies of different Calendula extracts have shown anti-inflammatory, anti-viral and anti-genotoxic properties of therapeutic interest. In this study, we evaluated the in vitro cytotoxic anti-tumor and immunomodulatory activities and in vivo anti-tumor effect of Laser Activated Calendula Extract (LACE), a novel extract of the plant Calendula Officinalis (Asteraceae). METHODS An aqueous extract of Calendula Officinalis was obtained by a novel extraction method in order to measure its anti-tumor and immunomodulatory activities in vitro. Tumor cell lines derived from leukemias, melanomas, fibrosarcomas and cancers of breast, prostate, cervix, lung, pancreas and colorectal were used and tumor cell proliferation in vitro was measured by BrdU incorporation and viable cell count. Effect of LACE on human peripheral blood lymphocyte (PBL) proliferation in vitro was also analyzed. Studies of cell cycle and apoptosis were performed in LACE-treated cells. In vivo anti-tumor activity was evaluated in nude mice bearing subcutaneously human Ando-2 melanoma cells. RESULTS The LACE extract showed a potent in vitro inhibition of tumor cell proliferation when tested on a wide variety of human and murine tumor cell lines. The inhibition ranged from 70 to 100%. Mechanisms of inhibition were identified as cell cycle arrest in G0/G1 phase and Caspase-3-induced apoptosis. Interestingly, the same extract showed an opposite effect when tested on PBLs and NKL cell line, in which in vitro induction of proliferation and activation of these cells was observed. The intraperitoneal injection or oral administration of LACE extract in nude mice inhibits in vivo tumor growth of Ando-2 melanoma cells and prolongs the survival day of the mice. CONCLUSION These results indicate that LACE aqueous extract has two complementary activities in vitro with potential anti-tumor therapeutic effect: cytotoxic tumor cell activity and lymphocyte activation. The LACE extract presented in vivo anti-tumoral activity in nude mice against tumor growth of Ando-2 melanoma cells.
Resumo:
BACKGROUND Spain shows the highest bladder cancer incidence rates in men among European countries. The most important risk factors are tobacco smoking and occupational exposure to a range of different chemical substances, such as aromatic amines. METHODS This paper describes the municipal distribution of bladder cancer mortality and attempts to "adjust" this spatial pattern for the prevalence of smokers, using the autoregressive spatial model proposed by Besag, York and Molliè, with relative risk of lung cancer mortality as a surrogate. RESULTS It has been possible to compile and ascertain the posterior distribution of relative risk for bladder cancer adjusted for lung cancer mortality, on the basis of a single Bayesian spatial model covering all of Spain's 8077 towns. Maps were plotted depicting smoothed relative risk (RR) estimates, and the distribution of the posterior probability of RR>1 by sex. Towns that registered the highest relative risks for both sexes were mostly located in the Provinces of Cadiz, Seville, Huelva, Barcelona and Almería. The highest-risk area in Barcelona Province corresponded to very specific municipal areas in the Bages district, e.g., Suría, Sallent, Balsareny, Manresa and Cardona. CONCLUSION Mining/industrial pollution and the risk entailed in certain occupational exposures could in part be dictating the pattern of municipal bladder cancer mortality in Spain. Population exposure to arsenic is a matter that calls for attention. It would be of great interest if the relationship between the chemical quality of drinking water and the frequency of bladder cancer could be studied.
Resumo:
BACKGROUND Challenges exist in the clinical diagnosis of drug-induced liver injury (DILI) and in obtaining information on hepatotoxicity in humans. OBJECTIVE (i) To develop a unified list that combines drugs incriminated in well vetted or adjudicated DILI cases from many recognized sources and drugs that have been subjected to serious regulatory actions due to hepatotoxicity; and (ii) to supplement the drug list with data on reporting frequencies of liver events in the WHO individual case safety report database (VigiBase). DATA SOURCES AND EXTRACTION (i) Drugs identified as causes of DILI at three major DILI registries; (ii) drugs identified as causes of drug-induced acute liver failure (ALF) in six different data sources, including major ALF registries and previously published ALF studies; and (iii) drugs identified as being subjected to serious governmental regulatory actions due to their hepatotoxicity in Europe or the US were collected. The reporting frequency of adverse events was determined using VigiBase, computed as Empirical Bayes Geometric Mean (EBGM) with 90% confidence interval for two customized terms, 'overall liver injury' and 'ALF'. EBGM of >or=2 was considered a disproportional increase in reporting frequency. The identified drugs were then characterized in terms of regional divergence, published case reports, serious regulatory actions, and reporting frequency of 'overall liver injury' and 'ALF' calculated from VigiBase. DATA SYNTHESIS After excluding herbs, supplements and alternative medicines, a total of 385 individual drugs were identified; 319 drugs were identified in the three DILI registries, 107 from the six ALF registries (or studies) and 47 drugs that were subjected to suspension or withdrawal in the US or Europe due to their hepatotoxicity. The identified drugs varied significantly between Spain, the US and Sweden. Of the 319 drugs identified in the DILI registries of adjudicated cases, 93.4% were found in published case reports, 1.9% were suspended or withdrawn due to hepatotoxicity and 25.7% were also identified in the ALF registries/studies. In VigiBase, 30.4% of the 319 drugs were associated with disproportionally higher reporting frequency of 'overall liver injury' and 83.1% were associated with at least one reported case of ALF. CONCLUSIONS This newly developed list of drugs associated with hepatotoxicity and the multifaceted analysis on hepatotoxicity will aid in causality assessment and clinical diagnosis of DILI and will provide a basis for further characterization of hepatotoxicity.
Resumo:
BACKGROUND Phytopharmacological studies of different Calendula extracts have shown anti-inflammatory, anti-viral and anti-genotoxic properties of therapeutic interest. In this study, we evaluated the in vitro cytotoxic anti-tumor and immunomodulatory activities and in vivo anti-tumor effect of Laser Activated Calendula Extract (LACE), a novel extract of the plant Calendula Officinalis (Asteraceae). METHODS An aqueous extract of Calendula Officinalis was obtained by a novel extraction method in order to measure its anti-tumor and immunomodulatory activities in vitro. Tumor cell lines derived from leukemias, melanomas, fibrosarcomas and cancers of breast, prostate, cervix, lung, pancreas and colorectal were used and tumor cell proliferation in vitro was measured by BrdU incorporation and viable cell count. Effect of LACE on human peripheral blood lymphocyte (PBL) proliferation in vitro was also analyzed. Studies of cell cycle and apoptosis were performed in LACE-treated cells. In vivo anti-tumor activity was evaluated in nude mice bearing subcutaneously human Ando-2 melanoma cells. RESULTS The LACE extract showed a potent in vitro inhibition of tumor cell proliferation when tested on a wide variety of human and murine tumor cell lines. The inhibition ranged from 70 to 100%. Mechanisms of inhibition were identified as cell cycle arrest in G0/G1 phase and Caspase-3-induced apoptosis. Interestingly, the same extract showed an opposite effect when tested on PBLs and NKL cell line, in which in vitro induction of proliferation and activation of these cells was observed. The intraperitoneal injection or oral administration of LACE extract in nude mice inhibits in vivo tumor growth of Ando-2 melanoma cells and prolongs the survival day of the mice. CONCLUSION These results indicate that LACE aqueous extract has two complementary activities in vitro with potential anti-tumor therapeutic effect: cytotoxic tumor cell activity and lymphocyte activation. The LACE extract presented in vivo anti-tumoral activity in nude mice against tumor growth of Ando-2 melanoma cells.
Resumo:
This study was initiated to investigate partial melting within the high-grade metamorphic rocks beneath the Little Cottonwood contact aureole (Utah, USA), in order to understand the melt generation, melt migration, and geometry of initial melt distribution on grain scale during crustal anatexis. The emplacement of the Little Cottonwood stock produced a contact aureole in the pelitic host rocks of the Big Cottonwood formation (BC). Metamorphic isogrades in pelitic rocks range form biotite to 2nd sillimanite grade as a function of distance from the contact. Migmatites are restricted to the highest grade and resulted form partial melting of the BC formation rocks. First melt was produced by a combined muscovite/biotite dehydration reaction in the sillimanite + k-feldspar stability field. Melt extraction from the pelites resulted in restites (magnetite + cordierite + alumosilicate ± biotite) surrounded by feldspar enriched quartzite zones. This texture is the result of gradual infiltration of partial melts into the quartzite. Larger, discrete melt accumulation occurred in extensional or transpressional domains such as boudin necks, veins, and ductile shear zones. Melt composition are Si02- rich, crystallized as pegmatites, and apparently were very mobile. They were able to infiltrate the quartzite pervaisivly. These melts are similar in composition to first melts produced in the hydrothermal partial melt experiments at 2kbar between 700 - 800°C on fine grained high metamorphic rocks (andalusite-cordierited-biotite-zone) of the BC formation. The experimental melts are water rich and in disequilibrium with the melting rock. Initial melt composition is heterogeneous for short run duration, reflective a lack of chemical equilibrium between individual melt pools. Rock core scale heterogeneity decreased with time indicating partial homogenization of melt compositions. A simultaneous shift of melt composition to higher silica content with time was observed. The silica content of the melt increased due to local melt/mineral reactions. Melt textures indicate that reactive melt transport is most efficient along grain boundaries rimmed by dissimilar grains. Melt heterogeneity resulted in chemical potential gradients which are major driving forces for initial melt migration and govern melt distribution during initial melting. An additional subject of the thesis is the crystal size distributions of opaque minerals in a fine-grained, high-grade meta-pelite of the Big Cottonwood which were obtained from 3D X-ray tomography (uCT) and 2D thin section analysis. µCT delivers accurate size distributions within a restricted range (~ a factor of 20 in size in a single 3D image), while the absolute number of crystals is difficult to obtain from these sparsely distributed, small crystals on the basis of 2D images. Crystal size distributions obtained from both methods are otherwise similar. - Ce travail de recherche a été entrepris dans le but d'étudier les processus de fusion partielle dans les roches fortement métamorphiques de l'auréole de contact de Little Cottonwood (Utah, USA) et ceci afin de comprendre la génération de liquide de fusion, la migration de ces liquides et la géométrie de la distribution initiale des liquides de fusion à l'échelle du grain durant l'anatexie de la croûte. L'emplacement du petit massif intrusif de Little Cottonwood a produit une auréole de contact dans les roches pélitiques encaissantes appartenant à la Foimation du Big Cottonwood (BC). Les isogrades métamorphiques dans les roches pélitiques varient de l'isograde de la biotite à la deuxième isograde de la sillimanite en fonction de la distance par rapport au massif intrusif. Les migmatites sont restreintes aux zones montrant le plus haut degré métamorphique et résultent de la fusion partielle des roches de la Formation de BC. Le premier liquide de fusion a été produit par la réaction de déshydratation combinée de la muscovite et de la biotite dans le champ de stabilité du feldspath potassique Pt de la sillimanite. L'extraction du liquide de fusion des pélites forme des restites (magnétites + cordiérite + aluminosilicate ± biotite) entourées par des zones de quartzites enrichies en feldspath. Cette texture est le résultat de l'infiltration graduelle du liquide de fusion partielle dans les quartzites. Des accumulations distinctes et plus larges de liquide de fusion ont lieu dans des domaines d'extension ou de transpression tels que les boudins, les veines, et les zones de cisaillement ductile. La composition des liquides de fusion est similaire à celle des liquides pegmatoïdes, et ces liquides sont apparemment très mobiles et capables d'infiltrer les quartzites. Ces liquides de fusion ont la même composition que les premiers liquides produits dans les expériences hydrotheunales de fusion partielle à 2kbar et entre 700-800° C sur les roches finement grenues et hautement métamorphiques (andalousite-cordiérite-biotite zone) de la Formation de BC. Les liquides de fusion obtenus expérimentalement sont riches en eau et sont en déséquilibre avec la roche en fusion. La composition initiale des liquides de fusion est hétérogène pour les expériences de courte durée et reflète l'absence d'équilibre chimique entre les différentes zones d'accumulation des liquides de fusion. L'hétérogénéité à l'échelle du noyau s'estompe avec le temps et témoigne de l'homogénéisation de la composition des liquides de fusion. Par ailleurs, on observe parallèlement un décalage de la composition des liquides vers des compositions plus riches en silice au cours du temps. Le contenu en silice des liquides de fusion évolue vers un liquide pegmatitique en raison des réactions liquides/minéraux. Les textures des liquides de fusion indiquent que le transport des liquides est plus efficace le long des bordures de grains bordés par des grains différents. Aucun changement apparent du volume total n'est visible. L'hétérogénéité des liquides s'accompagne d'un gradient de potentiel chimique qui sert de moteur principal à la migration des liquides et à la distribution des liquides durant la fusion. Un sujet complémentaire de ce travail de thèse réside dans l'étude de la distribution de la taille des cristaux opaques dans les pélites finement grenues et fortement métamorphiques de la Formation de Big Cottonwood. Les distributions de taille ont été obtenues suite à l'analyse d'images 3D acquise par tomographie ainsi que par analyse de lames minces. La microtomographie par rayon X fournit une distribution de taille précise sur une marge restreinte (- un facteur de taille 20 dans une seule image 3D), alors que le nombre absolu de cristaux est difficile à obtenir sur la base d'image 2D en raison de la petite taille et de la faible abondance de ces cristaux. Les distributions de taille obtenues par les deux méthodes sont sinon similaire. Abstact: Chemical differentiation of the primitive Earth was due to melting and separation of melts. Today, melt generation and emplacement is still the dominant process for the growth of the crust. Most granite formation is due to partial melting of the lower crust, followed by transport of magma through the crust to the shallow crust where it is emplaced. Partial melting and melt segregation are essential steps before such a granitic magma can ascent through the crust. The chemistry and physics of partial melting and segregation is complex. Hence detailed studies, in which field observations yield critical information that can be compared to experimental observations, are crucial to the understanding of these fundamental processes that lead and are leading to the chemical stratification of the Earth. The research presented in this thesis is a combined field and experimental study of partial melting of high-grade meta-pelitic rocks of the Little Cottonwood contact aureole (Utah, USA). Contact metamorphic rocks are ideal for textural studies of melt generation, since the relatively short times of the metamorphic event prevents much of the recrystallization which plagues textural studies of lower crustal rocks. The purpose of the study is to characterize melt generation, identify melting reactions, and to constrain melt formation, segregation and migration mechanisms. In parallel an experimental study was undertaken to investigate melt in the high grade meta pelitic rocks, to confirm melt composition, and to compare textures of the partial molten rock cores in the absence of deformation. Results show that a pegmatoidal melt is produced by partial melting of the pelitic rocks. This melt is highly mobile. It is capable of pervasive infiltration of the adjacent quartzite. Infiltration results in rounded quartz grains bordered by a thin feldspar rim. Using computed micro X-ray tomography these melt networks can be imaged. The infiltrated melt leads to rheological weakening and to a decompaction of the solid quartzite. Such decompaction can explain the recent discovery of abundant xenocrysts in many magmas, since it favors the isolation of mineral grains. Pervasive infiltration is apparently strongly influenced by melt viscosity and melt-crystal wetting behavior, both of which depend on the water content of melt and the temperature. In all experiments the first melt is produced on grain boundaries, dominantly by the local minerals. Grain scale heterogeneity of a melting rock leads thus to chemical concentration gradients in the melt, which are the driving force for initial melt migration. Pervasive melt films along grain boundaries leading to an interconnected network are immediately established. The initial chemical heterogeneities in the melt diminish with time. Résumé large public: La différenciation chimique de la Terre primitive est la conséquence de la fusion des roches et de la séparation des liquides qui en résultent. Aujourd'hui, la production de liquide magmatique est toujours le mécanisme dominant pour la croissance de la croûte terrestre. Ainsi la formation de la plupart des granites est un processus qui implique la production de magma par fusion partielle de la croûte inférieure, la migration de ces magmas à travers la croûte et finalement son emplacement dans les niveaux superficielle de la croûte terrestre. Au cours de cette évolution, les processus de fusion partielle et de ségrégation sont des étapes indispensables à l'ascension des granites à travers la croûte. Les conditions physico-chimiques nécessaires à la fusion partielle et à l'extraction de ces liquides sont complexes. C'est pourquoi des études détaillées des processus de fusion partielle sont cruciales pour la compréhension de ces mécanismes fondamentaux responsables de la stratification chimique de la Terre. Parmi ces études, les observations de terrain apportent notamment des informations déterminantes qui peuvent être comparées aux données expérimentales. Le travail de recherche présenté dans ce mémoire de thèse associe études de terrain et données expérimentales sur la fusion partielle des roches pélitiques de haut degré métamorphiques provenant de l'auréole de contact de Little Cottonwood (Utah, USA). Les roches du métamorphisme de contact sont idéales pour l'étude de la folination de liquide de fusion. En effet, la durée relativement courte de ce type d'événement métamorphique prévient en grande partie la recristallisation qui perturbe les études de texture des roches dans la croûte inférieure. Le but de cette étude est de caractériser la génération des liquides de fusion, d'identifier les réactions responsables de la fusion de ces roches et de contraindre la formation de ces liquides et leur mécanisme de ségrégation et de migration. Parallèlement, des travaux expérimentaux ont été entrepris pour reproduire la fusion partielle de ces roches en laboratoire. Cette étude a été effectuée dans le but de confirmer la composition chimique des liquides, et de comparer les textures obtenues en l'absence de déformation. Les résultats montrent qu'un liquide de fusion pegmatoïde est produit par fusion partielle des roches pélitiques. La grande mobilité de ce liquide permet une infiltration pénétrative dans les quarzites. Ces infiltrations se manifestent par des grains de quartz arrondis entourés par une fine bordure de feldspath. L'utilisation de la tomography à rayons X a permis d'obtenir des images de ce réseau de liquide de fusion. L'infiltration de liquide de fusion entraîne un affaiblissement de la rhéologie de la roche ainsi qu'une décompaction des quartzites massifs. Une telle décompaction peut expliquer la découverte récente d'abondants xénocristaux dans beaucoup de magmas, puisque elle favorise l'isolation des minéraux. L'infiltration pénétrative est apparemment fortement influencée par la viscosité du fluide de fusion et le comportement de la tension superficielle entre les cristaux et le liquide, les deux étant dépendant du contenu en eau dans le liquide de fusion et de la température. Dans toutes les expériences, le premier liquide est produit sur les bordures de grains, principalement par les minéraux locaux. L'hétérogénéité à l'échelle des grains d'une roche en fusion conduit donc à un gradient de concentration chimique dans le liquide, qui sert de moteur à l'initiation de la migration du liquide. Des fines couches de liquide de fusion le long de bordures de grains formant un réseau enchevêtré s'établit immédiatement. Les hétérogénéités chimiques initiales dans le liquide s'estompent avec le temps.
Resumo:
BACKGROUND Functional brain images such as Single-Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET) have been widely used to guide the clinicians in the Alzheimer's Disease (AD) diagnosis. However, the subjectivity involved in their evaluation has favoured the development of Computer Aided Diagnosis (CAD) Systems. METHODS It is proposed a novel combination of feature extraction techniques to improve the diagnosis of AD. Firstly, Regions of Interest (ROIs) are selected by means of a t-test carried out on 3D Normalised Mean Square Error (NMSE) features restricted to be located within a predefined brain activation mask. In order to address the small sample-size problem, the dimension of the feature space was further reduced by: Large Margin Nearest Neighbours using a rectangular matrix (LMNN-RECT), Principal Component Analysis (PCA) or Partial Least Squares (PLS) (the two latter also analysed with a LMNN transformation). Regarding the classifiers, kernel Support Vector Machines (SVMs) and LMNN using Euclidean, Mahalanobis and Energy-based metrics were compared. RESULTS Several experiments were conducted in order to evaluate the proposed LMNN-based feature extraction algorithms and its benefits as: i) linear transformation of the PLS or PCA reduced data, ii) feature reduction technique, and iii) classifier (with Euclidean, Mahalanobis or Energy-based methodology). The system was evaluated by means of k-fold cross-validation yielding accuracy, sensitivity and specificity values of 92.78%, 91.07% and 95.12% (for SPECT) and 90.67%, 88% and 93.33% (for PET), respectively, when a NMSE-PLS-LMNN feature extraction method was used in combination with a SVM classifier, thus outperforming recently reported baseline methods. CONCLUSIONS All the proposed methods turned out to be a valid solution for the presented problem. One of the advances is the robustness of the LMNN algorithm that not only provides higher separation rate between the classes but it also makes (in combination with NMSE and PLS) this rate variation more stable. In addition, their generalization ability is another advance since several experiments were performed on two image modalities (SPECT and PET).
Resumo:
There is strong evidence suggesting the presence of a genetic component in the aetiology of multiple myeloma (MM). However no genetic risk factors have been unequivocally established so far. To further our understanding of the genetic determinants of MM risk, a promising strategy is to collect a large set of patients in a consortium, as successfully done for other cancers. In this article, we review the main findings in the genetic susceptibility and pharmacogenetics of MM and present the strategy of the IMMEnSE (International Multiple Myeloma rESEarch) consortium in contributing to determine the role of genetic variation in pharmacogenetics and in MM risk.
Resumo:
CD66b is a member of the carcinoembryonic antigen family, which mediates the adhesion between neutrophils and to endothelial cells. Allergen-specific immunotherapy is widely used to treat allergic diseases, and the molecular mechanisms underlying this therapy are poorly understood. The present work was undertaken to analyze A) the in vitro effect of allergens and immunotherapy on cell-surface CD66b expression of neutrophils from patients with allergic asthma and rhinitis and B) the in vivo effect of immunotherapy on cell-surface CD66b expression of neutrophils from nasal lavage fluid during the spring season. Myeloperoxidase expression and activity was also analyzed in nasal lavage fluid as a general marker of neutrophil activation. RESULTS CD66b cell-surface expression is upregulated in vitro in response to allergens, and significantly reduced by immunotherapy (p<0.001). Myeloperoxidase activity in nasal lavage fluid was also significantly reduced by immunotherapy, as were the neutrophil cell-surface expression of CD66b and myeloperoxidase (p<0.001). Interestingly, CD66b expression was higher in neutrophils from nasal lavage fluid than those from peripheral blood, and immunotherapy reduced the number of CD66+MPO+ cells in nasal lavage fluid. Thus, immunotherapy positive effects might, at least in part, be mediated by the negative regulation of the CD66b and myeloperoxidase activity in human neutrophils.
Resumo:
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare subtype of leukemia/lymphoma, whose diagnosis can be difficult to achieve due to its clinical and biological heterogeneity, as well as its overlapping features with other hematologic malignancies. In this study we investigated whether the association between the maturational stage of tumor cells and the clinico-biological and prognostic features of the disease, based on the analysis of 46 BPDCN cases classified into three maturation-associated subgroups on immunophenotypic grounds. Our results show that blasts from cases with an immature plasmacytoid dendritic cell (pDC) phenotype exhibit an uncommon CD56- phenotype, coexisting with CD34+ non-pDC tumor cells, typically in the absence of extramedullary (e.g. skin) disease at presentation. Conversely, patients with a more mature blast cell phenotype more frequently displayed skin/extramedullary involvement and spread into secondary lymphoid tissues. Despite the dismal outcome, acute lymphoblastic leukemia-type therapy (with central nervous system prophylaxis) and/or allogeneic stem cell transplantation appeared to be the only effective therapies. Overall, our findings indicate that the maturational profile of pDC blasts in BPDCN is highly heterogeneous and translates into a wide clinical spectrum -from acute leukemia to mature lymphoma-like behavior-, which may also lead to variable diagnosis and treatment.
Resumo:
Lipid nanocapsules (NCs) represent promising tools in clinical practice for diagnosis and therapy applications. However, the NC appropriate functionalization is essential to guarantee high biocompatibility and molecule loading ability. In any medical application, the immune system-impact of differently functionalized NCs still remains to be fully understood. A comprehensive study on the action exerted on human peripheral blood mononuclear cells (PBMCs) and major immune subpopulations by three different NC coatings: pluronic, chitosan and polyethylene glycol-polylactic acid (PEG) is reported. After a deep particle characterization, the uptake was assessed by flow-cytometry and confocal microscopy, focusing then on apoptosis, necrosis and proliferation impact in T cells and monocytes. Cell functionality by cell diameter variations, different activation marker analysis and cytokine assays were performed. We demonstrated that the NCs impact on the immune cell response is strongly correlated to their coating. Pluronic-NCs were able to induce immunomodulation of innate immunity inducing monocyte activations. Immunomodulation was observed in monocytes and T lymphocytes treated with Chitosan-NCs. Conversely, PEG-NCs were completely inert. These findings are of particular value towards a pre-selection of specific NC coatings depending on biomedical purposes for pre-clinical investigations; i.e. the immune-specific action of particular NC coating can be excellent for immunotherapy applications.
Resumo:
Proteomics has come a long way from the initial qualitative analysis of proteins present in a given sample at a given time ("cataloguing") to large-scale characterization of proteomes, their interactions and dynamic behavior. Originally enabled by breakthroughs in protein separation and visualization (by two-dimensional gels) and protein identification (by mass spectrometry), the discipline now encompasses a large body of protein and peptide separation, labeling, detection and sequencing tools supported by computational data processing. The decisive mass spectrometric developments and most recent instrumentation news are briefly mentioned accompanied by a short review of gel and chromatographic techniques for protein/peptide separation, depletion and enrichment. Special emphasis is placed on quantification techniques: gel-based, and label-free techniques are briefly discussed whereas stable-isotope coding and internal peptide standards are extensively reviewed. Another special chapter is dedicated to software and computing tools for proteomic data processing and validation. A short assessment of the status quo and recommendations for future developments round up this journey through quantitative proteomics.
Resumo:
ABSTRACT: In sexual assault cases, autosomal DNA analysis of gynecological swabs is a challenge, as the presence of a large quantity of female material may prevent the detection of the male DNA. A solution to this problem is differential DNA extraction, but as there are different protocols, it was decided to test their efficiency on simulated casework samples. Four difficult samples were sent to the nine Swiss laboratories active in the forensic genetics. They used their routine protocols to separate the epithelial cell fraction, enriched with the non-sperm DNA, from the sperm fraction. DNA extracts were then sent to the organizing laboratory for analysis. Estimates of male to female DNA ratio without differential DNA extraction ranged from 1:38 to 1:339, depending on the semen used to prepare the samples. After differential DNA extraction, most of the ratios ranged from 1:12 to 9:1, allowing the detection of the male DNA. Compared to direct DNA extraction, cell separation resulted in losses of 94-98% of the male DNA. As expected, more male DNA was generally present in the sperm than in the epithelial cell fraction. However, for about 30% of the samples, the reverse trend was observed. The recovery of male and female DNA was highly variable depending on the laboratories. Experimental design similar to the one used in this study may help for local protocol testing and improvement.
Resumo:
Since the first anti-doping tests in the 1960s, the analytical aspects of the testing remain challenging. The evolution of the analytical process in doping control is discussed in this paper with a particular emphasis on separation techniques, such as gas chromatography and liquid chromatography. These approaches are improving in parallel with the requirements of increasing sensitivity and selectivity for detecting prohibited substances in biological samples from athletes. Moreover, fast analyses are mandatory to deal with the growing number of doping control samples and the short response time required during particular sport events. Recent developments in mass spectrometry and the expansion of accurate mass determination has improved anti-doping strategies with the possibility of using elemental composition and isotope patterns for structural identification. These techniques must be able to distinguish equivocally between negative and suspicious samples with no false-negative or false-positive results. Therefore, high degree of reliability must be reached for the identification of major metabolites corresponding to suspected analytes. Along with current trends in pharmaceutical industry the analysis of proteins and peptides remains an important issue in doping control. Sophisticated analytical tools are still mandatory to improve their distinction from endogenous analogs. Finally, indirect approaches will be discussed in the context of anti-doping, in which recent advances are aimed to examine the biological response of a doping agent in a holistic way.
Resumo:
Humans spend one third of their life sleeping, then we could raise the basic question: Why do we sleep? Despite the fact that we still don't fully understand its function, we made much progress in understanding at different levels how sleep is regulated. One model suggests that sleep is regulated by two processes: a homeostatic process that tracks the need for sleep and by a circadian rhythm that determines the preferred time-of-day sleep occurs. At the molecular level circadian rhythms are a property of interlocking transcriptional regula-tors referred to as clock genes. The heterodimeric transcription factors BMAL1::CLOCK/NPAS2 drive the transcription of many target genes including the clock genes Cryptochome1 (Cry1), Cry2, Period1 (Per1), and Per2. The encoded CRY/PER proteins are transcriptional inhibitors of BMAL1::CLOCK/NPAS2 thereby providing negative feedback to their own transcription. These genes seem, however, also involved in sleep homeostasis because the brain expression of clock genes, es-pecially that of Per2, increase as a function of time-spent-awake and because mice lacking clock genes display altered sleep homeostasis. The aim of first part of my doctoral work has been to advance our understanding the link that exists between sleep homeostasis and circadian rhythms investigating a possible mechanism by which sleep deprivation could alter clock gene expression by quantifying DNA-binding of the core-clock genes BMAL1, CLOCK and NPAS2 to their target chromatin loci including the E-box enhancers of the Per2 promoter. We made use of chromatin immunoprecipitation (ChIP) and quantitative poly-merase chain reaction (qPCR) to show that DNA-binding of CLOCK and BMAL1 to their target genes changes as a function of time-of-day in both liver and cerebral cortex. We then performed a 6h sleep deprivation (SD) and observed a significant decrease in DNA-binding of CLOCK and BMAL1 to Dbp. This is consistent with a decrease in Dbp mRNA levels after SD. The DNA-binding of NPAS2 and BMAL1 to Per2 was similarly decreased following SD. However, SD has been previously shown to in-crease Per2 expression in the cortex which seems paradoxical. Our results demonstrate that sleep-wake history can affect the molecular clock machinery directly at the level of the chromatin thereby altering the cortical expression of Dbp and Per2, and likely other targets. However, the precise dy-namic relationship between DNA-binding and mRNA expression, especially for Per2, remains elusive. The second aim of my doctoral work has been to perform an in depth characterization of cir-cadian rhythmicity, sleep architecture, analyze the response to SD in full null-Per2 knock-out (Per2-/-) mice, and Per1-/- mice, as well as their double knock-out offspring (Per1,2-/-) and littermate wildtype (Wt) mice. The techniques used include locomotor activity recording by passive infrared (PIR) sen-sors, EEG/EMG surgery, recording, and analysis, and cerebral cortex extraction and quantification of mRNA levels by qPCR. Under standard LD12:12 conditions, we found that wakefulness onset, as well as the time courses of clock gene expression in the brain and corticosterone plasma levels were ad-vanced by about 2h in Per2-/- mice compared to Wt mice. When released under constant dark condi-tions almost all Per2-/- mice (97%) became arrhythmic immediately. From these observations, we conclude that while Per2-/- mice seem to be able to anticipate dark onset, this does not result from a self-sustained circadian clock. Our results suggest instead that the earlier onset of activity results from a labile, not-self sustained 22h rhythm linked to light onset suggesting the existence of a light-driven rhythm. Analyses of sleep under LD12:12 conditions revealed that in both Per2-/- and Per1,2-/- mice the same sleep phenotypes are observed compared to Wt mice: increased NREM sleep frag-mentation and inability to adequately compensate the loss of NREM sleep. That suggests a possible role of PER2 in sleep consolidation and recovery.