836 resultados para event mapping
Resumo:
It is estimated that around 230 people die each year due to radon (222Rn) exposure in Switzerland. 222Rn occurs mainly in closed environments like buildings and originates primarily from the subjacent ground. Therefore it depends strongly on geology and shows substantial regional variations. Correct identification of these regional variations would lead to substantial reduction of 222Rn exposure of the population based on appropriate construction of new and mitigation of already existing buildings. Prediction of indoor 222Rn concentrations (IRC) and identification of 222Rn prone areas is however difficult since IRC depend on a variety of different variables like building characteristics, meteorology, geology and anthropogenic factors. The present work aims at the development of predictive models and the understanding of IRC in Switzerland, taking into account a maximum of information in order to minimize the prediction uncertainty. The predictive maps will be used as a decision-support tool for 222Rn risk management. The construction of these models is based on different data-driven statistical methods, in combination with geographical information systems (GIS). In a first phase we performed univariate analysis of IRC for different variables, namely the detector type, building category, foundation, year of construction, the average outdoor temperature during measurement, altitude and lithology. All variables showed significant associations to IRC. Buildings constructed after 1900 showed significantly lower IRC compared to earlier constructions. We observed a further drop of IRC after 1970. In addition to that, we found an association of IRC with altitude. With regard to lithology, we observed the lowest IRC in sedimentary rocks (excluding carbonates) and sediments and the highest IRC in the Jura carbonates and igneous rock. The IRC data was systematically analyzed for potential bias due to spatially unbalanced sampling of measurements. In order to facilitate the modeling and the interpretation of the influence of geology on IRC, we developed an algorithm based on k-medoids clustering which permits to define coherent geological classes in terms of IRC. We performed a soil gas 222Rn concentration (SRC) measurement campaign in order to determine the predictive power of SRC with respect to IRC. We found that the use of SRC is limited for IRC prediction. The second part of the project was dedicated to predictive mapping of IRC using models which take into account the multidimensionality of the process of 222Rn entry into buildings. We used kernel regression and ensemble regression tree for this purpose. We could explain up to 33% of the variance of the log transformed IRC all over Switzerland. This is a good performance compared to former attempts of IRC modeling in Switzerland. As predictor variables we considered geographical coordinates, altitude, outdoor temperature, building type, foundation, year of construction and detector type. Ensemble regression trees like random forests allow to determine the role of each IRC predictor in a multidimensional setting. We found spatial information like geology, altitude and coordinates to have stronger influences on IRC than building related variables like foundation type, building type and year of construction. Based on kernel estimation we developed an approach to determine the local probability of IRC to exceed 300 Bq/m3. In addition to that we developed a confidence index in order to provide an estimate of uncertainty of the map. All methods allow an easy creation of tailor-made maps for different building characteristics. Our work is an essential step towards a 222Rn risk assessment which accounts at the same time for different architectural situations as well as geological and geographical conditions. For the communication of 222Rn hazard to the population we recommend to make use of the probability map based on kernel estimation. The communication of 222Rn hazard could for example be implemented via a web interface where the users specify the characteristics and coordinates of their home in order to obtain the probability to be above a given IRC with a corresponding index of confidence. Taking into account the health effects of 222Rn, our results have the potential to substantially improve the estimation of the effective dose from 222Rn delivered to the Swiss population.
Resumo:
Precession electron diffraction (PED) is a hollow cone non-stationary illumination technique for electron diffraction pattern collection under quasikinematicalconditions (as in X-ray Diffraction), which enables “ab-initio” solving of crystalline structures of nanocrystals. The PED technique is recently used in TEMinstruments of voltages 100 to 300 kV to turn them into true electron iffractometers, thus enabling electron crystallography. The PED technique, when combined with fast electron diffraction acquisition and pattern matching software techniques, may also be used for the high magnification ultra-fast mapping of variable crystal orientations and phases, similarly to what is achieved with the Electron Backscatter Diffraction (EBSD) technique in Scanning ElectronMicroscopes (SEM) at lower magnifications and longer acquisition times.
Resumo:
BACKGROUND: Nonstructural protein 4B (NS4B) plays an essential role in the formation of the hepatitis C virus (HCV) replication complex. It is an integral membrane protein that has only poorly been characterized to date. In particular, a precise membrane topology is thus far elusive. Here, we explored a novel strategy to map the membrane topology of HCV NS4B. METHODS: Selective permeabilization of the plasma membrane, maleimide-polyethyleneglycol (mPEG) labeling of natural or engineered cysteine residues and immunoblot analyses were combined to map the membrane topology of NS4B. Cysteine substitutions were introduced at carefully selected positions within NS4B and their impact on HCV RNA replication and infectious virus production analyzed in cell culture. RESULTS: We established a panel of viable HCV mutants with cysteine substitutions at strategic positions within NS4B. These mutants are infectious and replicate to high levels in cell culture. In parallel, we adapted and optimized the selective permeabilization and mPEG labeling techniques to Huh-7 human hepatocellular carcinoma cells which can support HCV infection and replication. CONCLUSIONS: The newly established experimental tools and techniques should allow us to refine the membrane topology of HCV NS4B in a physiological context. The expected results should enhance our understanding of the functional architecture of the HCV replication complex and may provide new opportunities for antiviral intervention in the future.
Resumo:
Un âge synchrone (partie moyenne de l'Aptien inférieur) de l'ennoiement de la plate-forme Urgonienne helvétique en relation avec l'événement océanique anoxique 1a ("événement Selli"). - La fin de la plate-forme urgonienne, calibrée par analyse des isotopes stables du carbone sur roche totale et par biostratigraphie basée sur les ammonites, est datée du milieu de l'Aptien inférieur (Près de la limite des zones weissi et deshayesi). Cet arrêt, synchrone dans des coupes représentatives du domaine helvétique alpin, est un événement environemental majeur renregistré en France, en Espagne, au Protugal, en Oman, au Mexique et dans le domaine Pacifique. En tenant compte des limites de résolution de la biostatrigraphie et des autres techniques de datation, cet épisode semble également être synchrone à l'échelle globale. Pour beaucoup d'auteurs, la disparition de récifs de coraux et de rudistes corrélée à la fin de la sédimentation urgonienne correspond à la mise en place de conditions anoxiques à l'Aptien inférieur. Celles-ci caractérisent un événement d'importance global: l'événement anoxique OAE 1a.
Resumo:
Sickness absence (SA) is an important social, economic and public health issue. Identifying and understanding the determinants, whether biological, regulatory or, health services-related, of variability in SA duration is essential for better management of SA. The conditional frailty model (CFM) is useful when repeated SA events occur within the same individual, as it allows simultaneous analysis of event dependence and heterogeneity due to unknown, unmeasured, or unmeasurable factors. However, its use may encounter computational limitations when applied to very large data sets, as may frequently occur in the analysis of SA duration. To overcome the computational issue, we propose a Poisson-based conditional frailty model (CFPM) for repeated SA events that accounts for both event dependence and heterogeneity. To demonstrate the usefulness of the model proposed in the SA duration context, we used data from all non-work-related SA episodes that occurred in Catalonia (Spain) in 2007, initiated by either a diagnosis of neoplasm or mental and behavioral disorders. As expected, the CFPM results were very similar to those of the CFM for both diagnosis groups. The CPU time for the CFPM was substantially shorter than the CFM. The CFPM is an suitable alternative to the CFM in survival analysis with recurrent events,especially with large databases.
Resumo:
Automatic environmental monitoring networks enforced by wireless communication technologies provide large and ever increasing volumes of data nowadays. The use of this information in natural hazard research is an important issue. Particularly useful for risk assessment and decision making are the spatial maps of hazard-related parameters produced from point observations and available auxiliary information. The purpose of this article is to present and explore the appropriate tools to process large amounts of available data and produce predictions at fine spatial scales. These are the algorithms of machine learning, which are aimed at non-parametric robust modelling of non-linear dependencies from empirical data. The computational efficiency of the data-driven methods allows producing the prediction maps in real time which makes them superior to physical models for the operational use in risk assessment and mitigation. Particularly, this situation encounters in spatial prediction of climatic variables (topo-climatic mapping). In complex topographies of the mountainous regions, the meteorological processes are highly influenced by the relief. The article shows how these relations, possibly regionalized and non-linear, can be modelled from data using the information from digital elevation models. The particular illustration of the developed methodology concerns the mapping of temperatures (including the situations of Föhn and temperature inversion) given the measurements taken from the Swiss meteorological monitoring network. The range of the methods used in the study includes data-driven feature selection, support vector algorithms and artificial neural networks.
Resumo:
Due to the advances in sensor networks and remote sensing technologies, the acquisition and storage rates of meteorological and climatological data increases every day and ask for novel and efficient processing algorithms. A fundamental problem of data analysis and modeling is the spatial prediction of meteorological variables in complex orography, which serves among others to extended climatological analyses, for the assimilation of data into numerical weather prediction models, for preparing inputs to hydrological models and for real time monitoring and short-term forecasting of weather.In this thesis, a new framework for spatial estimation is proposed by taking advantage of a class of algorithms emerging from the statistical learning theory. Nonparametric kernel-based methods for nonlinear data classification, regression and target detection, known as support vector machines (SVM), are adapted for mapping of meteorological variables in complex orography.With the advent of high resolution digital elevation models, the field of spatial prediction met new horizons. In fact, by exploiting image processing tools along with physical heuristics, an incredible number of terrain features which account for the topographic conditions at multiple spatial scales can be extracted. Such features are highly relevant for the mapping of meteorological variables because they control a considerable part of the spatial variability of meteorological fields in the complex Alpine orography. For instance, patterns of orographic rainfall, wind speed and cold air pools are known to be correlated with particular terrain forms, e.g. convex/concave surfaces and upwind sides of mountain slopes.Kernel-based methods are employed to learn the nonlinear statistical dependence which links the multidimensional space of geographical and topographic explanatory variables to the variable of interest, that is the wind speed as measured at the weather stations or the occurrence of orographic rainfall patterns as extracted from sequences of radar images. Compared to low dimensional models integrating only the geographical coordinates, the proposed framework opens a way to regionalize meteorological variables which are multidimensional in nature and rarely show spatial auto-correlation in the original space making the use of classical geostatistics tangled.The challenges which are explored during the thesis are manifolds. First, the complexity of models is optimized to impose appropriate smoothness properties and reduce the impact of noisy measurements. Secondly, a multiple kernel extension of SVM is considered to select the multiscale features which explain most of the spatial variability of wind speed. Then, SVM target detection methods are implemented to describe the orographic conditions which cause persistent and stationary rainfall patterns. Finally, the optimal splitting of the data is studied to estimate realistic performances and confidence intervals characterizing the uncertainty of predictions.The resulting maps of average wind speeds find applications within renewable resources assessment and opens a route to decrease the temporal scale of analysis to meet hydrological requirements. Furthermore, the maps depicting the susceptibility to orographic rainfall enhancement can be used to improve current radar-based quantitative precipitation estimation and forecasting systems and to generate stochastic ensembles of precipitation fields conditioned upon the orography.
Resumo:
Summary: Assessment of the quality of care of people with dementia - Dementia Care Mapping pilot
Resumo:
The objective of this work was to select and use microsatellite markers, to map genomic regions associated with the genetic control of thermosensitive genic male sterility (TGMS) in rice. An F2 population, derived from the cross between fertile and TGMS indica lines, was used to construct a microsatellite-based genetic map of rice. The TGMS phenotype showed a continuous variation in the segregant population. A low level of segregation distortion was detected in the F2 (14.65%), whose cause was found to be zygotic selection. There was no evidence suggesting a cause-effect relationship between zygotic selection and the control of TGMS in this cross. A linkage map comprising 1,213.3 cM was constructed based on the segregation data of the F2 population. Ninety-five out of 116 microsatellite polymorphic markers were assembled into 11 linkage groups, with an average of 12.77 cM between two adjacent marker loci. The phenotypic and genotypic data allowed for the identification of three new quantitative trait loci (QTL) for thermosensitive genic male sterility in indica rice. Two of the QTL were mapped on chromosomes that, so far, have not been associated with the genetic control of the TGMS trait (chromosomes 1 and 12). The third QTL was mapped on chromosome 7, where a TGMS locus (tms2) has recently been mapped. Allelic tests will have to be developed, in order to clarify if the two regions are the same or not.
Resumo:
High-resolution seismic and sediment core data from the 'Grand Lac' basin of Lake Geneva reveal traces of repeated slope instabilities with one main slide-evolved mass-flow (minimum volume 0.13 km3) that originated from the northern lateral slope of the lake near the city of Lausanne. Radiocarbon dating of organic remains sampled from the top of the main deposit gives an age interval of 1865-1608 BC. This date coincides with the age interval for a mass movement event described in the 'Petit Lac' basin of Lake Geneva (1872-1622 BC). Because multiple mass movements took place at the same time in different parts of the lake, we consider the most likely trigger mechanism to be a strong earthquake (Mw 6) that occurred in the period between 1872 and 1608 BC. Based on numerical simulations, we show the major deposit near Lausanne would have generated a tsunami with local wave heights of up to 6 m. The combined effects of the earthquake and the following tsunami provide a possible explanation for a gap in lake dwellers occupation along the shores of Lake Geneva revealed by dendrochronological dating of two palafitte archaeological sites.
Resumo:
Abstract: Asthma prevalence in children and adolescents in Spain is 10-17%. It is the most common chronic illness during childhood. Prevalence has been increasing over the last 40 years and there is considerable evidence that, among other factors, continued exposure to cigarette smoke results in asthma in children. No statistical or simulation model exist to forecast the evolution of childhood asthma in Europe. Such a model needs to incorporate the main risk factors that can be managed by medical authorities, such as tobacco (OR = 1.44), to establish how they affect the present generation of children. A simulation model using conditional probability and discrete event simulation for childhood asthma was developed and validated by simulating realistic scenario. The parameters used for the model (input data) were those found in the bibliography, especially those related to the incidence of smoking in Spain. We also used data from a panel of experts from the Hospital del Mar (Barcelona) related to actual evolution and asthma phenotypes. The results obtained from the simulation established a threshold of a 15-20% smoking population for a reduction in the prevalence of asthma. This is still far from the current level in Spain, where 24% of people smoke. We conclude that more effort must be made to combat smoking and other childhood asthma risk factors, in order to significantly reduce the number of cases. Once completed, this simulation methodology can realistically be used to forecast the evolution of childhood asthma as a function of variation in different risk factors.
Resumo:
PURPOSE: The aim of this study was to develop models based on kernel regression and probability estimation in order to predict and map IRC in Switzerland by taking into account all of the following: architectural factors, spatial relationships between the measurements, as well as geological information. METHODS: We looked at about 240,000 IRC measurements carried out in about 150,000 houses. As predictor variables we included: building type, foundation type, year of construction, detector type, geographical coordinates, altitude, temperature and lithology into the kernel estimation models. We developed predictive maps as well as a map of the local probability to exceed 300 Bq/m(3). Additionally, we developed a map of a confidence index in order to estimate the reliability of the probability map. RESULTS: Our models were able to explain 28% of the variations of IRC data. All variables added information to the model. The model estimation revealed a bandwidth for each variable, making it possible to characterize the influence of each variable on the IRC estimation. Furthermore, we assessed the mapping characteristics of kernel estimation overall as well as by municipality. Overall, our model reproduces spatial IRC patterns which were already obtained earlier. On the municipal level, we could show that our model accounts well for IRC trends within municipal boundaries. Finally, we found that different building characteristics result in different IRC maps. Maps corresponding to detached houses with concrete foundations indicate systematically smaller IRC than maps corresponding to farms with earth foundation. CONCLUSIONS: IRC mapping based on kernel estimation is a powerful tool to predict and analyze IRC on a large-scale as well as on a local level. This approach enables to develop tailor-made maps for different architectural elements and measurement conditions and to account at the same time for geological information and spatial relations between IRC measurements.
Resumo:
This tutorial review details some of the recent advances in signal analyses applied to event-related potential (ERP) data. These "electrical neuroimaging" analyses provide reference-independent measurements of response strength and response topography that circumvent statistical and interpretational caveats of canonical ERP analysis methods while also taking advantage of the greater information provided by high-density electrode montages. Electrical neuroimaging can be applied across scales ranging from group-averaged ERPs to single-subject and single-trial datasets. We illustrate these methods with a tutorial dataset and place particular emphasis on their suitability for studies of clinical and/or developmental populations.