664 resultados para epigenetic
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Candida albicans is a common opportunistic, dimorphic human fungal pathogen. One of its virulence factors is the morphological switch between yeasts and hyphal or pseudohyphal forms, which can invade tissues and cause damage. Our studies focus on factors regulating pseudohyphae and epigenetic modifications of C. albicans. Regulating factors of pseudohyphae are aromatic alcohols and high phosphate. At low concentrations, exogenous aromatic alcohols induced pseudohyphae, as did high phosphate. For addressing the pathways involved in inducing pseudohyphae by aromatic alcohols or high phosphate, we used mutants defective in cAMP dependent PKA pathway (efg1/efg1), MAP kinase pathway (cph1/cph1), or both (cph1/cph1/efg1/efg1). These mutants failed to produce either hyphae or pseudohyphae in the presence of aromatic alcohols; but high phosphate still stimulated pseudohyphae. Gcn4, a transcription activator of more than 500 amino acid related genes, is turned-on in response to amino acid starvation. The accumulation of aromatic alcohols sends nitrogen starvation signals, which inhibit eIF2B, which in turn derepresses Gcn4p. High phosphate also induces pseudohyphae by derepressing Gcn4p, although the pathways involved are still unknown. In sum, aromatic alcohols and high phosphate induce pseudohyphae by derepressing Gcn4. In this study we found a novel posttranslational histone modification in C. albicans, which is biotinylation. Western blot and Mass spectrometry techniques were used to find that Histones H2B and H4 were biotinylated at every condition tested such as yeast vs. hyphae, aerobic growth vs. anaerobic growth, rich medium vs. defined medium. In C. albicans lysines K8, K11 in histone H4 and lysines K17, K18, K31 in histone H2B are biotin attachment sites as found using mass spectrometry. Biotin was also found to enhance the germ tube formation of C. albicans. Germ tube formation assays with biotin-starved cells as inoculum showed low percent of germ tubes (1-5%). Addition of biotin to the media showed 100% germ tubes. Biotinylation of histones were not detected from biotin-starved cells. Appendix-A details work related to Farnesol quantification assays in several strains of C.albicans and Ceratocystis ulmi, and growth studies of class E VPS strains of Saccharomyces Cerevisiae. Adviser: Kenneth W. Nickerson
Resumo:
The fig (Ficus carica L.) is a fruit tree of great world importance and, therefore, the genetic improvement becomes an important field of research for better crops, being necessary to gather information on this species, mainly regarding its genetic variability so that appropriate propagation projects and management are made. The improvement programs of fig trees using conventional procedures in order to obtain new cultivars are rare in many countries, such as Brazil, especially due to the little genetic variability and to the difficulties in obtaining plants from gamete fusion once the wasp Blastophaga psenes, responsible for the natural pollinating, is not found in Brazil. In this way, the mutagenic genetic improvement becomes a solution of it. For this reason, in an experiment conducted earlier, fig plants formed by cuttings treated with gamma ray were selected based on their agronomic characteristics of interest. We determined the genetic variability in these fig tree selections, using RAPD and AFLP molecular markers, comparing them to each other and to the Roxo-de-Valinhos, used as the standard. For the reactions of DNA amplification, 140 RAPD primers and 12 primer combinations for AFLP analysis were used. The selections did not differ genetically between themselves and between them and the Roxo-de-Valinhos cultivar. Techniques that can detect polymorphism between treatments, such as DNA sequencing, must be tested. The phenotypic variation of plants may be due to epigenetic variation, necessitating the use of techniques with methylation-sensitive restriction enzymes.
Resumo:
Despite the fact that heterochronic processes seem to be an important process determining morphological evolution of the delphinid skull, previous workers have not found allometric scaling as relevant factor in the differentiation within the genus Sotalia. Here we analyzed the skull ontogeny of the estuarine dolphin S. guianensis and investigate differential growth and shape changes of two cranial regions the neurocranium and the face in order to evaluate the relevance of cranial compartmentalization on the ontogeny of this structure. Our results show that, even though both cranial regions stop growing at adulthood, the face has higher initial growth rates than the neurocranium. The rate of shape changes is also different for both regions, with the face showing a initially higher, but rapidly decreasing rate of change, while the neurocranium shows a slow decreasing rate, leading to persistent and localized shape changes throughout adult life, a pattern that could be related to epigenetic regional factors. The pattern of ontogenetic shape change described here is similar to those described for other groups of Delphinidae and also match intra and interspecific variation found within the family, suggesting that mosaic heterochrony could be an important factor in the morphological evolution of this group. (C) 2012 Deutsche Gesellschaft fur Saugetierkunde. Published by Elsevier GmbH. All rights reserved.
Resumo:
Background: Sugarcane is an important crop worldwide for sugar production and increasingly, as a renewable energy source. Modern cultivars have polyploid, large complex genomes, with highly unequal contributions from ancestral genomes. Long Terminal Repeat retrotransposons (LTR-RTs) are the single largest components of most plant genomes and can substantially impact the genome in many ways. It is therefore crucial to understand their contribution to the genome and transcriptome, however a detailed study of LTR-RTs in sugarcane has not been previously carried out. Results: Sixty complete LTR-RT elements were classified into 35 families within four Copia and three Gypsy lineages. Structurally, within lineages elements were similar, between lineages there were large size differences. FISH analysis resulted in the expected pattern of Gypsy/heterochromatin, Copia/euchromatin, but in two lineages there was localized clustering on some chromosomes. Analysis of related ESTs and RT-PCR showed transcriptional variation between tissues and families. Four distinct patterns were observed in sRNA mapping, the most unusual of which was that of Ale1, with very large numbers of 24nt sRNAs in the coding region. The results presented support the conclusion that distinct small RNA-regulated pathways in sugarcane target the lineages of LTR-RT elements. Conclusions: Individual LTR-RT sugarcane families have distinct structures, and transcriptional and regulatory signatures. Our results indicate that in sugarcane individual LTR-RT families have distinct behaviors and can potentially impact the genome in diverse ways. For instance, these transposable elements may affect nearby genes by generating a diverse set of small RNA's that trigger gene silencing mechanisms. There is also some evidence that ancestral genomes contribute significantly different element numbers from particular LTR-RT lineages to the modern sugarcane cultivar genome.
Resumo:
Although somatic cell nuclear transfer (SCNT) is a promising tool, its potential use is hampered by the high mortality rates during the development to term of cloned offspring. Abnormal epigenetic reprogramming of donor nuclei after SCNT is thought to be the main cause of this low efficiency. We hypothesized that chromatin-modifying agents (CMAs) targeting chromatin acetylation and DNA methylation could alter the chromatin configuration and turn them more amenable to reprogramming. Thus, bovine fibroblasts were treated with 5-aza-2'-deoxycytidine (AZA) plus trichostatin (TSA) or hydralazine (HH) plus valproic acid (VPA) whereas, in another trial, cloned bovine zygotes were treated with TSA. The treatment of fibroblasts with either AZA + TSA or HH + VPA increased histone acetylation, but did not affect the level of DNA methylation. However, treatment with HH + VPA decreased cellular viability and proliferation. The use of these cells as nuclear donors showed no positive effect on pre- and postimplantation development. Regarding the treatment of cloned zygotes with TSA, treated one-cell embryos showed an increase in the acetylation patterns, but not in the level of DNA methylation. Moreover, this treatment revealed no positive effect on pre- and postimplantation development. This work provides evidence the treatment of either nuclear donor cells or cloned zygotes with CMAs has no positive effect on pre- and postimplantation development of cloned cattle.
Resumo:
Background: Reelin is under epigenetic control and has been reported to be decreased in cortical regions in schizophrenia. Methods: To establish if expression of reelin is altered in specific cortical, hippocampal or thalamic regions of schizophrenia patients, we measured gene expression of reelin in a postmortem study of elderly patients with schizophrenia and non-affected controls in both hemispheres differentiating between gray and white matter. We compared cerebral postmortem samples (dorsolateral prefrontal cortex BA9 and BA46, superior temporal cortex BA22, entorhinal cortex BA28, sensoric cortex BA1-3, hippocampus, CA4, mediodorsal nucleus of the thalamus) from 12 schizophrenia patients with 13 normal subjects investigating gene expression of reelin in the gray and white matter of both hemispheres by in situ-hybridization. Results: The left prefrontal area (BA9) of schizophrenia patients revealed a decreased expression of reelin-mRNA of 29.1% in the white (p = 0.022) and 13.6% in the gray matter (p = 0.007) compared to the control group. None of the other regions examined showed any statistically significant differences. Conclusion: Since reelin is responsible for migration and synapse formation, the decreased gene expression of reelin in the left prefrontal area of schizophrenia patients points to neurodevelopmental deficits in neuronal migration and synaptic plasticity. However, our study group was small, and results should be verified using larger samples. Copyright (C) 2012 S. Karger AG, Basel
Resumo:
There has been tremendous progress in understanding neural stem cell (NSC) biology, with genetic and cell biological methods identifying sequential gene expression and molecular interactions guiding NSC specification into distinct neuronal and glial populations during development. Data has emerged on the possible exploitation of NSC-based strategies to repair adult diseased brain. However, despite increased information on lineage specific transcription factors, cell-cycle regulators and epigenetic factors involved in the fate and plasticity of NSCs, understanding of extracellular cues driving the behavior of embryonic and adult NSCs is still very limited. Knowledge of factors regulating brain development is crucial in understanding the pathogenetic mechanisms of brain dysfunction. Since injury-activated repair mechanisms in adult brain often recapitulate ontogenetic events, the identification of these players will also reveal novel regenerative strategies. Here, we highlight the purinergic system as a key emerging player in the endogenous control of NSCs. Purinergic signalling molecules (ATP, UTP and adenosine) act with growth factors in regulating the synchronized proliferation, migration, differentiation and death of NSCs during brain and spinal cord development. At early stages of development, transient and time-specific release of ATP is critical for initiating eye formation; once anatomical CNS structures are defined, purinergic molecules participate in calcium-dependent neuron-glia communication controlling NSC behaviour. When development is complete, some purinergic mechanisms are silenced, but can be re-activated in adult brain after injury, suggesting a role in regeneration and self-repair. Targeting the purinergic system to develop new strategies for neurodevelopmental disorders and neurodegenerative diseases will be also discussed.
Resumo:
Objectives: To precisely classify the various forms of TD, and then to screen for mutations in transcription factor genes active in thyroid development. Subjects and methods: Patients underwent ultrasound, thyroid scan, and serum thyroglobulin measurement to accurately diagnose the form of TD. DNA was extracted from peripheral leukocytes. The PAX8, and NKX2.5 genes were evaluated in all patients, and TSH receptor ( TSHR) gene in those with hypoplasia. Results: In 27 nonconsanguineous patients with TD, 13 were diagnosed with ectopia, 11 with hypoplasia, and 3 with athyreosis. No mutations were detected in any of the genes studied. Conclusion: Sporadic cases of TD are likely to be caused by epigenetic factors, rather than mutations in thyroid transcription factors or genes involved in thyroid development. Arq Bras Endocrinol Metab. 2012;56(3):173-7
Resumo:
Aims: An extensive variety of prenatal insults are associated with an increased incidence of metabolic and cardiovascular disorders in adult life. We previously demonstrated that maternal global nutrient restriction during pregnancy leads to increased blood pressure and endothelial dysfunction in the adult offspring. This study aimed to assess whether prenatal exposure to nutritional insult has transgenerational effects in F-2 and F-3 offspring. Main methods: For this, female Wistar rats were randomly divided into two groups on day 1 of pregnancy: a control group fed standard chow ad libitum and a restricted group fed 50% of the ad libitum intake throughout gestation. At delivery, all animals were fed a standard laboratory chow diet. At 11 weeks of age, one female and one male from each restricted litter were randomly selected and mated with rats from another restricted litters in order to generate the F-2 offspring. The same procedure produced F-3 generation. Similarly, the rats in the control group were bred for each generation. Key Findings: Our findings show that the deleterious effects of maternal nutrient restriction to which the F-0 mothers were exposed may not be limited to the male first generation. In fact, we found that elevated blood pressure, an impaired vasodilatory response to acetylcholine and alterations in NO production were all transferred to the subsequent males from F-2 and F-3 generations. Significance: Our data show that global nutrient restriction during pregnancy results in a specific phenotype that can be passed transgenerationally to a second and third generation. (c) 2012 Elsevier Inc. All rights reserved.
Resumo:
von Walden F, Casagrande V, Ostlund Farrants AK, Nader GA. Mechanical loading induces the expression of a Pol I regulon at the onset of skeletal muscle hypertrophy. Am J Physiol Cell Physiol 302: C1523-C1530, 2012. First published March 7, 2012; doi:10.1152/ajpcell.00460.2011.-The main goal of the present study was to investigate the regulation of ribosomal DNA (rDNA) gene transcription at the onset of skeletal muscle hypertrophy. Mice were subjected to functional overload of the plantaris by bilateral removal of the synergist muscles. Mechanical loading resulted in muscle hypertrophy with an increase in rRNA content. rDNA transcription, as determined by 45S pre-rRNA abundance, paralleled the increase in rRNA content and was consistent with the onset of the hypertrophic response. Increased transcription and protein expression of c-Myc and its downstream polymerase I (Pol I) regulon (POL1RB, TIF-1A, PAF53, TTF1, TAF1C) was also consistent with the increase in rRNA. Similarly, factors involved in rDNA transcription, such as the upstream binding factor and the Williams syndrome transcription factor, were induced by mechanical loading in a corresponding temporal fashion. Chromatin immunoprecipitation revealed that these factors, together with Pol I, were enriched at the rDNA promoter. This, in addition to an increase in histone H3 lysine 9 acetylation, demonstrates that mechanical loading regulates rRNA synthesis by inducing a gene expression program consisting of a Pol I regulon, together with accessory factors involved in transcription and chromatin remodeling at the rDNA promoter. Altogether, these data indicate that transcriptional and epigenetic mechanisms take place in the regulation of ribosome production at the onset of muscle hypertrophy.
Resumo:
Most patients with Kabuki syndrome (KS) are the only person in their family with the condition. However, familial cases of KS have been described showing evidence that this syndrome can be inherited as a dominant trait with variable expressivity. We report on two related individuals with facial findings characteristic of KS. The proposita had arched eyebrows, long and upward slanting palpebral fissures, cleft lip and palate, retromicrognathia, brachydactyly of hands and feet, stubby fingers, nail hypoplasia, and prominent finger pads. Her mother had eyebrows with dispersed lateral half, long and upward slanting palpebral fissures, retrognathia, abnormal and posteriorly rotated ears, prominent finger pads, brachydactyly of feet, learning difficulties, and psychomotor development delay. DNA sequencing revealed a novel missense mutation in the MLL2 gene in both the proposita and her mother. The mutation (p.R5432Q) was found in the exon 51, within the SET domain of the gene, which confers methyltransferase activity on the protein. Therefore, the epigenetic and transcriptional regulatory properties of this protein may be altered and this suggests that the mutation is the cause of phenotype observed in both the patient and her mother. The clinical signs and the molecular evidence in this family further support the notion that KS is an autosomal dominant condition with variable expressivity. To our knowledge this is the first report of a Brazilian family with recurrence of this syndrome. (C) 2012 Wiley Periodicals, Inc.
Resumo:
Background: The in vitro production (IVP) of embryos by in vitro fertilization or cloning procedures has been known to cause epigenetic changes in the conceptus that in turn are associated with abnormalities in pre- and postnatal development. Handmade cloning (HMC) procedures and the culture of zona-free embryos in individual microwells provide excellent tools for studies in developmental biology, since embryo development and cell allocation patterns can be evaluated under a wide range of embryo reconstruction arrangements and in in vitro embryo culture conditions. As disturbances in embryonic cell allocation after in vitro embryo manipulations and unusual in vivo conditions during the first third of pregnancy appear to be associated with large offspring, embryo aggregation procedures may allow a compensation for epigenetic defects between aggregated embryos or even may influence more favorable cell allocation in embryonic lineages, favoring subsequent development. Thus, the aim of this study was to evaluate in vitro embryo developmental potential and the pattern of cell allocation in blastocysts developed after the aggregation of handmade cloned embryos produced using syngeneic wild type and/or transgenic somatic cells. Materials, Methods & Results: In vitro-matured bovine cumulus-oocyte complexes (COC) were manually bisected after cumulus and zona pellucida removal; then, two enucleated hemi-oocytes were paired and fused with either a wild type (WT) or a GFP-expressing (GFP) fetal skin cell at the 11th and 19th passages, respectively. Following chemical activation, reconstructed cloned embryos and zona-free parthenote embryos were in vitro-cultured in microwells, for 7 days, either individually (1 x 100%) or after the aggregation of two structures (2 x 100%) per microwell, as follows: (G1) one WT cloned embryo; (G2) two aggregated WT embryos; (G3) one GFP cloned embryo; (G4) two aggregated GFP embryos; (G5) aggregation of a WT embryo and a GFP embryo; (G6) one parthenote embryo; or (G7) two aggregated parthenote embryos. Fusion (clones), cleavage (Day 2), and blastocyst (Day 7) rates, and embryonic cell allocation were compared by the. 2 or Fisher tests. Total cell number (TCN) in blastocysts was analyzed by the Student's test (P < 0.05). Fusion and cleavage rates, and cell allocation were similar between groups. On a per WOW basis, development to the blastocyst stage was similar between groups, except for lower rates of development seen in G3. However, when based on number of embryos per group (one or two), blastocyst development was higher in G1 than all other groups, which were similar between one another. Cloned GFP embryos had lower in vitro development to the blastocyst stage than WT embryos, which had more TCN than parthenote or aggregated chimeric WT/GFP embryos. Aggregated GFP embryos had fewer cells than the other embryo groups. Discussion: The in vitro development of GFP cloned embryos was lower than WT embryos, with no effects on cell allocation in resulting blastocysts. Differences in blastocyst rate between groups were likely due to lower GFP-expressing cell viability, as GFP donor cells were at high population cell doublings when used for cloning. On a per embryo basis, embryo aggregation on Day 1 resulted in blastocyst development similar to non-aggregated embryos on Day 7, with no differences in cell proportion between groups. The use of GFP-expressing cells was proven a promising strategy for the study of cell allocation during embryo development, which may assist in the elucidation of mechanisms of abnormalities after in vitro embryo manipulations, leading to the development of improved protocols for the in vitro production (IVP) of bovine embryos.
Resumo:
The DOK1 gene is a putative tumour suppressor gene located on the human chromosome 2p13 which is frequently rearranged in leukaemia and other human tumours. We previously reported that the DOK1 gene can be mutated and its expression down-regulated in human malignancies. However, the mechanism underlying DOK1 silencing remains largely unknown. We show here that unscheduled silencing of DOK1 expression through aberrant hypermethylation is a frequent event in a variety of human malignancies. DOK1 was found to be silenced in nine head and neck cancer (HNC) cell lines studied and DOK1 CpG hypermethylation correlated with loss of gene expression in these cells. DOK1 expression could be restored via demethylating treatment using 5-aza-2'deoxycytidine. In addition, transduction of cancer cell lines with DOK1 impaired their proliferation, consistent with the critical role of epigenetic silencing of DOK1 in the development and maintenance of malignant cells. We further observed that DOK1 hypermethylation occurs frequently in a variety of primary human neoplasm including solid tumours (93% in HNC, 81% in lung cancer) and haematopoietic malignancy (64% in Burkitt's lymphoma). Control blood samples and exfoliated mouth epithelial cells from healthy individuals showed a low level of DOK1 methylation, suggesting that DOK1 hypermethylation is a tumour specific event. Finally, an inverse correlation was observed between the level of DOK1 gene methylation and its expression in tumour and adjacent non tumour tissues. Thus, hypermethylation of DOK1 is a potentially critical event in human carcinogenesis, and may be a potential cancer biomarker and an attractive target for epigenetic-based therapy.