974 resultados para epididymis tail
Resumo:
A new species of gecko, Hemidactylus graniticolus sp. nov. is described from Karnataka state, south India. This large-sized (SVL to at least 110.6 mm), rupicolous gecko differs from congeners in having 16-18 longitudinal rows of fairly regularly arranged, subtrihedral, weakly keeled, striated tubercles at midbody; 9-11 and 12-13 subdigital lamellae on the first and fourth digits, respectively, of both manus and pes; tail with transverse series of four enlarged tubercles on each tail segment; 23-28 femoral pores on each side separated by 1-3 poreless scales; 12-14 supralabials and 9-11 infralabials. Molecular data support the distinctiveness of the new species and its affinities with large-bodied, tuberculate Hemidactylus spp. from India and Sri Lanka.
Resumo:
We present a natural framework for studying the persistence problem in two-dimensional fluid turbulence by using the Okubo-Weiss parameter Lambda to distinguish between vortical and extensional regions. We then use a direct numerical simulation of the two-dimensional, incompressible Navier-Stokes equation with Ekman friction to study probability distribution functions (PDFs) of the persistence times of vortical and extensional regions by employing both Eulerian and Lagrangian measurements. We find that, in the Eulerian case, the persistence-time PDFs have exponential tails; by contrast, this PDF for Lagrangian particles, in vortical regions, has a power-law tail with an exponent theta = 2.9 +/- 0.2.
Resumo:
We present analytic results to show that the Schwinger-boson hole-fermion mean-field state exhibits non-Fermi liquid behavior due to spin-charge separation. The physical electron Green's function consists of three additive components. (a) A Fermi-liquid component associated with the bose condensate. (b) A non-Fermi liquid component which has a logarithmic peak and a long tail that gives rise to a linear density of states that is symmetric about the Fermi level and a momentum distribution function with a logarithmic discontinuity at the Fermi surface. (c) A second non-Fermi liquid component associated with the thermal bosons which leads to a constant density of states. It is shown that zero-point fluctuations associated with the spin-degrees of freedom are responsible for the logarithmic instabilities and the restoration of particle-hole symmetry close to the Fermi surface.
Resumo:
4-Styrylcoumarin crystallizes from chloroform and hexane mixture in two morphologically different modifications. The monoclinic form (needles, P2(1)/c) undergoes stereospecific photodimerization producing anti head-to-tail dimer across pyrone double bond, whereas the triclinic modification (prisms, P ($) over bar 1) dimerizes yielding photodimer of the same configuration, but across styrenic double bond. Single crystal X-ray analyses of the dimorphs reveal the packing differences permitting rationalization of the regio- and stereochemistry of the photoproducts. The significantly low dimer yield from the prismatic crystals is rationalized.
Resumo:
Coordination-driven self-assembly of oxalato-bridged half-sandwich p-cymene ruthenium complex Ru-2(mu-eta(4)-C2O4)(MeOH)(2)(eta(6)-p-cymene)(2)] (O3SCF3)(2) (1a) with several ditopic donors (L-a-L-d) in methanol affords a series of bi- and tetranuclear metallamacrocycles (2a and 3-5). Similarly, the combination of 2,5-dihydroxy-1,4-benzoquinonato (dhbq)-bridged binuclear complex Ru-2(mu-eta(4)-C6H2O4)(MeOH)(2)(eta(6)-p-cymene)(2)](O3SCF3)(2) (1b) with a flexible bidentate amide linker (L-a) in 1:1 molar ratio gave the corresponding tetranuclear complex 2b. All the macrocycles were isolated as their triflate salts in high yields and were fully characterized by various spectroscopic techniques. Finally, the molecular structures of all the assemblies were determined unambiguously by single-crystal X-diffraction analysis. Interestingly, the combination of acceptor 1a or 1b with an unsymmetrical linear ditopic donor L-a results in a self-sorted linkage isomeric (head-to-tail) macrocycle (2a or 2b) despite the possibility of formation of two different isomeric macrocycles (head-to-head or head-to-tail) due to different connectivity of the donor. Molecular structures of the complexes 2a and 2b showed tetranuclear rectangular geometry with dimensions of 5.51 angstrom x 13.29 angstrom for 2a and 7.91 angstrom x 13.46 angstrom for 2b. In both cases, two binuclear Ru-2(II) building blocks are connected by a mu-N-(4-pyridyl)isonicotinamide donor in a head-to-tail fashion. Surprisingly, the macrocycle 2a loses one counteranion and cocrystallizes with monodeprotonated 1,3,5-trihydroxybenzene via strong intermolecular pi-pi stacking and hydrogen bonding. The tweezer complex 3 showed strong fluorescence in solution, and it showed fluorescence sensing toward nitroaromatic compounds. A fluorescence study demonstrated a marked quenching of the initial fluorescence intensity of the macrocycle 3 upon gradual addition of trinitrotoluene and exhibits significant fluorescence quenching response only for nitroaromatic compounds compared to various other aromatic compounds tested.
Resumo:
The epitopic core sequences recognized by three monoclonal antibodies raised to chicken riboflavin carrier protein (RCP) were mapped to the C-terminal tail-end of the protein using the pepscan method A 21-residue synthetic peptide corresponding to residues 200-219 of the protein and comprising the regions corresponding to the antibodies was synthesized. Administration of polyclonal antibodies specific to this peptide led to termination of early pregnancy in mice. Also, active immunization of rats with the peptide-purified protein derivative conjugate inhibited establishment of pregnancy. These results demonstrate the functional importance of the C-terminal 200-219 region of chicken RCP. Copyright (C) 1996 Elsevier Science Ltd.
Resumo:
The bending rigidity kappa of bilayer membranes was studied with coarse grained soft repulsive potentials using dissipative particle dynamics (DPD) simulations. Using a modified Andersen barostat to maintain the bilayers in a tensionless state, the bending rigidity was obtained from a Fourier analysis of the height fluctuations. From simulations carried out over a wide range of membrane thickness, the continuum scaling relation kappa proportional to d(2) was captured for both the L-alpha and L-beta phases. For membranes with 4 to 6 tail beads, the bending rigidity in the L-beta phase was found to be 10-15 times higher than that observed for the L-alpha phase. From the quadratic scalings obtained, a six fold increase in the area stretch modulus, k(A) was observed across the transition. The magnitude of increase in both kappa and k(A) from the L-alpha to the L-beta phase is consistent with current experimental observations in lipid bilayers and to our knowledge provides for the first time a direct evaluation of the mechanical properties in the L-beta phase.
Resumo:
We report a study of the kinematics of the cometary globules in the Gum Nebula using the J = 1 yields 0 transition line of (CO-12)O. A morphological center for the system with which 60 percent of the globules are associated is identified. It is shown that the observed radial velocities of the heads of the globules are consistent with an expansion of the system. Systematic velocity gradients are present along some of the tails. The estimated expansion age and the tail stretching age are both about a few million years, suggesting a common origin for the expansion and the formation of the tails. The presence of young stars of similar ages in some of the globules points to star formation triggered by the same cause. Possible scenarios are briefly discussed.
Resumo:
The crystal structure of the dehydro octapeptide Boc-Val-Delta Phe-Phe-Ala-Leu-Ala-Delta Phe-Leu-OH has been determined to atomic resolution by X-ray crystallographic methods. The crystals grown by slow evaporation of peptide solution in methanol/water are orthorhombic, space group P2(1)2(1)2(1). The unit cell parameters are a = 8.404(3), b = 25.598(2) and c = 27.946(3) Angstrom, Z = 4. The agreement factor is R = 7.58% for 3636 reflections having (\F-o\) greater than or equal to 3 sigma (\F-o\). The peptide molecule is characterised by a 3(10)-helix at the N-terminus and a pi-turn at the C-terminus. This conformation is exactly similar to the helix termination features observed in proteins. The pi-turn conformation observed in the octapeptide is in good agreement with the conformational features of pi-turns seen in some proteins. The alpha(L)-position in the pi-turn of the octapeptide is occupied by Delta Phe(7), which shows that even bulky residues can be accommodated in this position of the pi-turns. In proteins, it is generally seen that alpha(L)-position is occupied by glycine residue. No intermolecular head-to-tail hydrogen bonds are observed in solid state structure of the octapeptide. A water molecule located in the unit cell of the peptide molecule is mainly used to hold the peptide molecule together in the crystal. The conformation observed for the octapeptide might be useful to understand the helix termination and chain reversal in proteins and to construct helix terminators for denovo protein design.
Resumo:
The present paper reports the results of a theoretical study of the forces and factors driving the solubilization of n-alkane solubilizates into the micellar core of some non-ionic surfactants, based on a micellar model which includes the cavity forming free energy as a component of micellization. The solubilizate is n-decane and the non-ionic surfactants considered are n-decyl-polyoxyethylene surfactants. The extent of solubilization, i.e. the mole fraction of the solubilizate within the core has been calculated. The results indicate that the incorporated solubilizate has more translational and rotational degrees of freedom as compared to those of the tail parts of the surfactants present in the core. This drives the total free energy of aggregation after solubilization into a more favourable direction. The results are in fair agreement with the experimental results.
Resumo:
The crystal structure of tetrakis(cytosine)copper(II) perchlorate dihydrate has been determined. All the hydrogen atoms were obtained from Fourier-difference synthesis. The geometry around. copper is a bicapped octahedron (4 + 2 + 2*). The adjacent cytosine rings are oriented head-to-tail with respect to each other and are roughly at right angles to the co-ordination plane. The exocyclic oxo groups form an interligand, intracomplex hydrogen-bonding network above and below the co-ordination plane with the exocyclic amino groups of alternate cytosine bases. The EPR and electronic spectra are consistent with the retention of the solid-state structure in solution. The steric effect of the C(2)=O group of cytosine is offset by the presence of the intracomplex hydrogen-bonding network. The trend in Ei values of Cu-II-Cu-I couples for 1.4 complexes of cytosine, cytodine, pyridine, 2-methylpyridine and N-methylimidazole suggests that both steric effects and pi-delocalization in imidazole and pyridine ligands and the steric effect of C(2)=O in pyrimidine ligands are important in stabilising Cu-I relative to Cu-II.
Resumo:
The asymmetric unit of the title compound, (C14H13N2S)(2)CuBr4]center dot 2H(2)O, contains two cations, one anion and two solvent water molecules that are connected via O-H center dot center dot center dot Br, N-H center dot center dot center dot Br and N-H center dot center dot center dot O hydrogen bonds into a two-dimensional polymeric structure. The cations are arranged in a head-to-tail fashion and form stacks along 100]. The central Cu-II atom of the anion is in a distorted tetrahedral environment.
Resumo:
An N-alpha-protected model pentapeptide containing two consecutive Delta Phe residues, Boc-Leu-Delta Phe-Delta Phe-Ala-Phe-NHMe, has been synthesized by solution methods and fully characterized. H-1-nmr studies provided evidence for the occurrence of a significant population of a conformer having three consecutive, intramolecularly II-bonded beta-bends in solution. The solid state structure has been determined by x-ray diffraction methods. The crystals grown from aqueous methanol are orthorhombic, space group P2(1)2(1)2(1),, a = 11.503(2), b = 16.554(2), c = 22.107(3) Angstrom, V = 4209(1) Angstrom,(3) and Z = 4. The x-ray data were collected on a CAD4 diffractometer using CuKalpha radiation (lambda = 1.5418 Angstrom). The structure was determined using direct methods and refined by full-matrix least-squares procedure. The R factor is 5.3%. The molecule is characterized by a right handed 3(10)-helical conformation ((phi) = -68.2 degrees (psi) = -26.3 degrees), which is made up of two consecutive type III beta-bends and one type I beta-bend. In the solid state the helical molecules are aligned head-to-tail, thus forming long rod like structures. A comparison with other peptide structures containing consecutive Delta Phe residues is also provided. The present study confirms that the -Delta Phe-Delta Phe-sequence can be accommodated in helical structures. (C) 1997 John Wiley & Sons, Inc.
Resumo:
We study linear and nonlinear optical properties of two push-pull polyenes stacked in head to head (HtH) and head to tail (HtT) configurations, at different stacking angles within the Pariser-Parr-Pople model using exact diagonalization method. By varying the stacking angle between the polyenes, we find that the optical gap varies marginally, but transition dipoles show large variations. We find that the dominant first-order hyperpolarizability component beta(XXX) for HtH arrangement and beta(YYY) for HtT arrangement strongly depend on the distance of separation between molecules, while the other smaller component beta(XYY) for HtH arrangement and beta(XXY) for HtT arrangement) does not show this variation with distance. We find that the beta(XXX) for HtH configuration shows a maximum at an angle away from 0, in contrast with the oriented gas model. This angle varies with distance between the polyenes, and at large distance it falls to 0. The ratio of all components of beta of a dimer to monomer is less than two for HtH configuration for all angles. But for HtT configurations the ratio of the dominant beta component is greater than two at large angles. Our ZINDO study on two monomers (4-hydroxy-4'-nitroazobenzene) connected in a nonconjugative fashion shows a linear increase in vertical bar(beta) over right arrow (av)vertical bar without much red shift in optical gap. There is a linear increase in vertical bar(beta) over right arrow (av)vertical bar with increase in number of monomers connected nonconjugatively without resulting in a red shift in optical gap.
Resumo:
An experimental investigation on the fracture properties of high-strength concrete (HSC) is reported. Three-point bend beam specimens of size 100 x 100 x 500 mm were used as per RILEM-FMC 50 recommendations. The influence of maximum size of coarse aggregate on fracture energy, fracture toughness, and characteristic length of concrete has been studied. The compressive strength of concrete ranged between 40 and 75 MPa. Relatively brittle fracture behavior was observed with the increase in compressive strength. The load-CMOD relationship is linear in the ascending portion and gradually drops off after the peak value in the descending portion. The length of the tail end portion of the softening curve increases as the size of coarse aggregate increases. The fracture energy increases as the maximum size of coarse aggregate and compressive strength of concrete increase. The characteristic length of concrete increases with the maximum size of coarse aggregate and decreases as the compressive strength increases, (C) 2002 Elsevier Science Ltd. All rights reserved.