976 resultados para enzyme characterization
Resumo:
Tissue transglutaminase (TG2) is a multifunctional Ca2+ activated protein crosslinking enzyme secreted into the extracellular matrix (ECM), where it is involved in wound healing and scarring, tissue fibrosis, celiac disease and metastatic cancer. Extracellular TG2 can also facilitate cell adhesion important in wound healing through a non-transamidating mechanism via its association with fibronectin (FN), heparan sulphates (HS) and integrins. Regulating the mechanism how TG2 is translocated into the ECM therefore provides a strategy for modulating these physiological and pathological functions of the enzyme. Here, through molecular modelling and mutagenesis we have identified the HS binding site of TG2 202KFLKNAGRDCSRRSSPVYVGR222. We demonstrate the requirement of this binding site for translocation of TG2 into the ECM through a mechanism involving cell surface shedding of HS. By synthesizing a peptide NPKFLKNAGRDCSRRSS corresponding to the HS binding site within TG2, we also demonstrate how this mimicking peptide can in isolation compensate the RGD-induced loss of cell adhesion on FN via binding to syndecan-4, leading to activation of PKCa, pFAK-397 and ERK1/2 and the subsequent formation of focal adhesions and actin cytoskeleton organization. A novel regulatory mechanism for TG2 translocation into the extracellular compartment that depends upon TG2 conformation and the binding of HS is proposed.
Resumo:
This study investigated the effect on the mechanical and physicochemical properties of type II collagen scaffolds after cross-linking with microbial transglutaminase (mTGase). It is intended to develop a collagen-based scaffold to be used for the treatment of degenerated intervertebral discs. By measuring the amount of ε-(γ-glutamyl)lysine isodipeptide formed after cross-linking, it was determined that the optimal enzyme concentration was 0.005% (w/v). From the production of covalent bonds induced by mTGase cross-linking, the degradation resistance of type II collagen scaffolds can be enhanced. Rheological analysis revealed an almost sixfold increase in storage modulus (G') with 0.005% (w/v) mTGase cross-linked scaffolds (1.31 ± 0.03 kPa) compared to controls (0.21 ± 0.01 kPa). There was a significant reduction in the level of cell-mediated contraction of scaffolds with increased mTGase concentrations. Cell proliferation assays showed that mTGase cross-linked scaffolds exhibited similar cytocompatibility properties in comparison to non-cross-linked scaffolds. In summary, cross-linking type II collagen with mTGase imparted more desirable properties, making it more applicable for use as a scaffold in tissue engineering applications. © Mary Ann Liebert, Inc.
Resumo:
Programmed cell death, apoptosis, is a highly regulated process that removes damaged or unwanted cells in vivo and has significant immunological implications. Defective clearance of apoptotic cells by macrophages (professional phagocytes) is known to result in chronic inflammatory and autoimmune disease. Tissue transglutaminase 2 (TG2) is a Ca2+-dependent protein cross linking enzyme known to play an important role in a number of cell functions. Up-regulation of TG2 is thought to be involved in monocyte to macrophage differentiation and defective clearance of apoptotic cells by TG2 null mice has been described though in this context the role of TG2 is yet to be fully elucidated. Cell surface-associated TG2 is now recognized as being important in regulating cell adhesion and migration, via its association with cell surface receptors such as syndecan-4, ß1 and ß3 integrin, but its extracellular role in the clearance of apoptotic cells is still not fully explored. Our work aims to characterize the role of TG2 and its partners (e.g. syndecan-4 and ß3 integrin) in macrophage function within the framework of apoptotic cell clearance. Both THP-1 cell-derived macrophage-like cells and primary human macrophages were analyzed for the expression and function of TG2. Macrophage-apoptotic cell interaction studies in the presence of TG2 inhibitors (both cell permeable and impermeable, irreversible and active site directed) resulted in significant inhibition of interaction indicating a possible role for TG2 in apoptotic cell clearance. Macrophage cell surface TG2 and, in particular, its cell surface crosslinking activity was found to be crucial in dictating apoptotic cell clearance. Our further studies demonstrate syndecan-4 association with TG2 and imply possible cooperation of these proteins in apoptotic cell clearance. Knockdown studies of syndecan-4 reveal its importance in apoptotic cell clearance. Our current findings suggest that TG2 has a crucial but yet to be fully defined role in apoptotic cell clearance which seems to involve protein cross linking and interaction with other cell surface receptors.
Resumo:
Apoptosis is a highly regulated process that removes damaged or unwanted cells in vivo and defective clearance of apoptotic cells by macrophages has significant immunological implications. Tissue transglutaminase 2 (TG2) is a Ca2+-dependent protein cross linking enzyme known to play an important role in cell proliferation, differentiation, carcinogenesis, programmed death, and aging. TG2 as a guanosine triphosphate (GTP)-binding or GTP- hydrolyzing protein for mediating signal transduction and as a cell cycle regulator emphasized the importance of this enzyme in aging process. The ubiquitous presence of TG2 compared to the other organ-specific TGases has attracted special attention as a cellular aging device. TG2 activity and expression are known to increase in aging humans suggesting possible involvement in several age-related processes such as decrease in vascular compliance and increased stiffening of conduit arteries, cataract formation, Alzheimer's disease and senescent epidermal keratinocytes. Our work aims to characterize the role of TG2 and its partners (e.g. syndecan-4 and ß3 integrin) in macrophage function. THP-1 cell derived macrophage-like cells and primary human macrophages were analyzed for the expression and function of TG2. Macrophage-apoptotic cell interaction studies in the presence of TG2 inhibitors resulted in significant inhibition of interaction. Macrophage cell surface TG2 and, in particular, its cell surface cross linking activity was found to be crucial in apoptotic cell clearance. Syndecan-4 association with TG2 implies possible cooperation of these proteins and knockdown studies of syndecan-4 reveal its importance in apoptotic cell clearance. Our current findings suggest that TG2 has a crucial but yet to be fully defined role in apoptotic cell clearance.
Resumo:
Removal of dead or diseased cells is crucial feature of apoptosis for managing many biological processes such as tissue remodelling, tissue homeostasis and resolution and control of immune responses throughout life. Tissue transglutaminase (TG2) is a protein crosslinking enzyme that has been implicated in apoptotic cell clearance but also mediates many important cell functions including cell adhesion, migration and monocyte-macrophage differentiation. Cell surface-associated TG2 regulates cell adhesion and migration, via its association with receptors such as syndecan-4, ß1 and ß3 integrin. Whilst defective apoptotic cell clearance has been described in TG2-deficient mice, the precise extracellular role of TG2 in apoptotic cell clearance remains ill-defined. This thesis addresses macrophage TG2 in cell corpse clearance. TG2 expression (cytosolic and cell surface) in human macrophages was revealed and data demonstrate that loss of TG2 activity through the use of inhibitors of function, including cellimpermeable inhibitors significantly inhibit the ability of macrophages to clear apoptotic cells (AC). This includes reduced macrophage recruitment to and binding of apoptotic cells. Association studies reveal TG2-syndecan-4 interaction through heparan sulphate side chains, and knockdown of syndecan-4 reduces cell surface TG2 activity and apoptotic cell clearance. Furthermore, inhibition of TG2 activity reduces crosslinking of CD44, reported to augment AC clearance. Thus it defines for the first time a role for TG2 activity at the cell surface of human macrophages in multiple stages of AC clearance and proposed that TG2, in association with heparan sulphates, may exert its effect on AC clearance via crosslinking of CD44.
Resumo:
Tissue transglutaminase (tTG) is a calcium-dependent and guanosine 5'-triphosphate (GTP) binding enzyme, which catalyzes the post-translational modification of proteins by forming intermolecular ε(ϒ-glutamyl)lysine cross-links. In this study, human osteoblasts (HOBs) isolated from femoral head trabecular bone and two osteosarcoma cell lines (HOS and MG-63) were studied for their expression and localization of tTG. Quantitative evaluation of transglutaminase (TG) activity determined using the [1,414C]-putrescine incorporation assay showed that the enzyme was active in all cell types. However, there was a significantly higher activity in the cell homogenates of MG-63 cells as compared with HOB and HOS cells (p <0.001). There was no significant difference between the activity of the enzyme in HOB and HOS cells. All three cell types also have a small amount of active TG on their surface as determined by the incorporation of biotinylated cadaverine into fibronectin. Cell surface-related tTG was further shown by preincubation of cells with tTG antibody, which led to inhibition of cell attachment. Western blot analysis clearly indicated that the active TG was tTG and immunocytochemistry showed it be situated in the cytosol of the cells. In situ extracellular enzyme activity also was shown by the cell-mediated incorporation of fluorescein cadaverine into extracellular matrix (ECM) proteins. These results clearly showed that MG-63 cells have high extracellular activity, which colocalized with the ECM protein fibronectin and could be inhibited by the competitive primary amine substrate putrescine. The contribution of tTG to cell surface/matrix interactions and to the stabilization of the ECM of osteoblast cells therefore could by an important factor in the cascade of events leading to bone differentiation and mineralization.
Resumo:
Transglutaminase 2 (TG2) is a multifunctional protein with diverse catalytic activities and biological roles. Its best studied function is the Ca2+-dependent transamidase activity leading to formation of γ-glutamyl-ε-lysine isopeptide crosslinks between proteins or γ-glutamyl-amine derivatives. TG2 has a poorly studied isopeptidase activity cleaving these bonds. We have developed and characterised TG2 mutants which are significantly deficient in transamidase activity while have normal or increased isopeptidase activity (W332F) and vice versa (W278F). The W332F mutation led to significant changes of both the Km and the Vmax kinetic parameters of the isopeptidase reaction of TG2 while its calcium and GTP sensitivity was similar to the wild type enzyme. The W278F mutation resulted in six times elevated amine incorporating transamidase activity demonstrating the regulatory significance of W278 and W332 in TG2 and that mutations can change opposed activities located at the same active site. The further application of our results in cellular systems may help to understand TG2 -driven physiological and pathological processes better and lead to novel therapeutic approaches where an increased amount of cross-linked proteins correlates with the manifestation of degenerative disorders.
Resumo:
The health status of wild and captive Atlantic Bottlenose dolphins ( Tersiops truncatis) is difficult to ascertain. Mass strandings of these animals have been attributed to pollutants, as well as bacterial infections. Using human Enzyme Linked Immuno-Assays (ELISA) for immunological cytokines, I measured soluble cytokine levels with respect to their health status. In a retrospective analysis of dolphin sera, there was a trend of higher cytokine levels in “sick” animals. I cultured dolphin lymphocytes in the presence of a mitogen (PHA), a super antigen (Staph-A), Lipopolysaccharide (LPS), and a calcium flux inducer (PMA). Levels of messenger RNA, from these cultured cells, were assayed with Polymerase Chain Reaction (PCR) using primers for the human cytokines IL-2, IL-4, IL-6, IL-10, Tumor Necrosis Factor, and Interferon gamma. Only IL-4, IL-6, and IL-10 messages were obtained, inferring similar nucleotide homology to the human primer sequences. The PCR products were sequenced. Sixteen IL-4 sequences, twelve IL-6 sequences and seven IL-10 sequences were obtained and analyzed. Each cytokine exhibited the same nucleotide sequence in all dolphins examined. There was no difference in the cytokine profile in response to the various stimuli. The derived amino acid composition for each of the dolphin cytokines was used for molecular modeling, which showed that dolphin IL-4, IL-6, and IL-10 were structurally similar to the corresponding proteins of Perissodactyla. ^
Resumo:
Antibiotic resistance, production of alginate and virulence factors, and altered host immune responses are the hallmarks of chronic Pseudomonas aeruginosa infection. Failure of antibiotic therapy has been attributed to the emergence of P. aeruginosa strains that produce β-lactamase constitutively. In Enterobacteriaceae, β-lactamase induction involves four genes with known functions: ampC, ampR, ampD, and ampG, encoding the enzyme, transcriptional regulator, amidase and permease, respectively. In addition to all these amp genes, P. aeruginosa possesses two ampG paralogs, designated ampG and ampP. In this study, P. aeruginosa ampC, ampR, ampG and ampP were analyzed. Inactivation of ampC in the prototypic PAO1 failed to abolish the β-lactamase activity leading to the discovery of P. aeruginosa oxacillinase PoxB. Cloning and expression of poxB in Escherichia coli confers β-lactam resistance. Both AmpC and PoxB contribute to P. aeruginosa resistance against a wide spectrum of β-lactam antibiotics. The expression of PoxB and AmpC is regulated by a LysR-type transcriptional regulator AmpR that up-regulates AmpC but down-regulates PoxB activities. Analyses of P. aeruginosa ampR mutant demonstrate that AmpR is a global regulator that modulates the expressions of Las and Rhl quorum sensing (QS) systems, and the production of pyocyanin, LasA protease and LasB elastase. Introduction of the ampR mutation into an alginate-producing strain reveals the presence of a complex co-regulatory network between antibiotic resistance, QS alginate and other virulence factor production. Using phoA and lacZ protein fusion analyses, AmpR, AmpG and AmpP were localized to the inner membrane with one, 16 and 10 transmembrane helices, respectively. AmpR has a cytoplasmic DNA-binding and a periplasmic substrate binding domains. AmpG and AmpP are essential for the maximal expression of β-lactamase. Analysis of the murein breakdown products suggests that AmpG exports UDP-N-acetylmuramyl-L-alanine-γ-D-glutamate-meso-diaminopimelic acid-D-alanine-D-alanine (UDP-MurNAc-pentapeptide), the corepressor of AmpR, whereas AmpP imports N-acetylglucosaminyl-beta-1,4-anhydro-N-acetylmuramic acid-Ala-γ-D-Glu-meso-diaminopimelic acid (GlcNAc-anhMurNAc-tripeptide) and GlcNAc-anhMurNAc-pentapeptide, the co-inducers of AmpR. This study reveals a complex interaction between the Amp proteins and murein breakdown products involved in P. aeruginosa β-lactamase induction. In summary, this dissertation takes us a little closer to understanding the P. aeruginosa complex co-regulatory mechanism in the development of β-lactam resistance and establishment of chronic infection. ^
Resumo:
All pathogens require high energetic influxes to counterattack the host immune system and without this energy bacterial infections are easily cleared. This study is an investigation into one highly bioenergetic pathway in Pseudomonas aeruginosa involving the amino acid L-serine and the enzyme L-serine deaminase (L-SD). P. aeruginosa is an opportunistic pathogen causing infections in patients with compromised immune systems as well as patients with cystic fibrosis. Recent evidence has linked L-SD directly to the pathogenicity of several organisms including but not limited to Campylobacter jejuni, Mycobacterium bovis, Streptococcus pyogenes, and Yersinia pestis. We hypothesized that P. aeruginosa L-SD is likely to be critical for its virulence. Genome sequence analysis revealed the presence of two L-SD homo logs encoded by sdaA and sdaB. We analyzed the ability of P. aeruginosa to utilize serine and the role of SdaA and SdaB in serine deamination by comparing mutant strains of sdaA (PAOsdaA) and sdaB (PAOsdaB) with their isogenic parent P. aeruginosa P AO 1. We demonstrated that P. aeruginosa is unable to use serine as a sole carbon source. However, serine utilization is enhanced in the presence of glycine and this glycine-dependent induction of L-SD activity requires the inducer serine. The amino acid leucine was shown to inhibit L-SD activity from both SdaA and SdaB and the net contribution to L-serine deamination by SdaA and SdaB was ascertained at 34% and 66 %, respectively. These results suggest that P. aeruginosa LSD is quite different from the characterized E. coli L-SD that is glycine-independent but leucine-dependent for activation. Growth mutants able to use serine as a sole carbon source were also isolated and in addition, suicide vectors were constructed which allow for selective mutation of the sdaA and sdaB genes on any P. aeruginosa strain of interest. Future studies with a double mutant will reveal the importance of these genes for pathogenicity.
Resumo:
The juvenile hormones (JHs) are sesquiterpenoid compounds that play a central role in insect reproduction, development and behavior. They are synthesized and secreted by a pair of small endocrine glands, the corpora allata (CA), which are intimately connected to the brain. The enzymes involved in the biosynthesis of JH are attractive targets for the control of mosquito populations. This dissertation is a comprehensive functional study of five Aedes aegypti CA enzymes, HMG-CoA synthase (AaHMGS), mevalonate kinase (AaMK), phosphomevalonate kinase (AaPMK), farnesyl diphosphate synthase (AaFPPS) and farnesyl pyrophosphate phosphatase (AaFPPase). The enzyme AaHMGS catalyzes the condensation of acetoacetyl-CoA and acetyl-CoA to produce HMG-CoA. The enzyme does not require any co-factor, although its activity is enhanced by addition of Mg2+. The enzyme AaMK is a class I mevalonate kinase that catalyzes the ATP-dependent phosphorylation of mevalonic acid to form mevalonate 5-phosphate. Activity of AaMK is inhibited by isoprenoids. The enzyme AaPMK catalyzes the cation-dependent reversible reaction of phosphomevalonate and ATP to form diphosphate mevalonate and ADP. The enzyme AaFPPS catalyzes the condensation of isopentenyl diphosphate (IPP) and dimethylallyl pyrophosphate (DMAPP) to form geranyl diphosphate (GPP) and farnesyl pyrophosphate (FPP). The enzyme AaFPPS shows an unusual product regulation mechanism, with chain length final product of 10 or 15 C depending on the metal cofactor present. The enzymes AaFPPase-1 and AaFPPase-2 efficiently hydrolyze FPP into farnesol, although RNAi experiments demonstrate that only AaFPPase-1 is involved in the catalysis of FPP into FOL in the CA of A. aegypti. This dissertation also explored the inhibition of the activity of some of the JH biosynthesis enzymes as tools for insect control. We described the effect of N-acetyl-S-geranylgeranyl-L-cysteine as a potent inhibitor of AaFPPase 1 and AaFPPase-2. In addition, inhibitors of AaMK and AaHMGS were also investigated using purified recombinant proteins. The present study provides an important contribution to the characterization of recombinant proteins, the analysis of enzyme kinetics and inhibition constants, as well as the understanding of the importance of these five enzymes in the control of JH biosynthesis rates.
Resumo:
Histone deacetylases (HDACs) have been shown to play key roles in tumorigenesis, and
have been validated as effective enzyme target for cancer treatment. Largazole, a marine natural
product isolated from the cyanobacterium Symploca, is an extremely potent HDAC inhibitor that
has been shown to possess high differential cytotoxicity towards cancer cells along with excellent
HDAC class-selectivity. However, improvements can be made in the isoform-selectivity and
pharmacokinetic properties of largazole.
In attempts to make these improvements and furnish a more efficient biochemical probe
as well as a potential therapeutic, several largazole analogues have been designed, synthesized,
and tested for their biological activity. Three different types of analogues were prepared. First,
different chemical functionalities were introduced at the C2 position to probe the class Iselectivity profile of largazole. Additionally, docking studies led to the design of a potential
HDAC8-selective analogue. Secondly, the thiol moiety in largazole was replaced with a wide
variety of othe zinc-binding group in order to probe the effect of Zn2+ affinity on HDAC
inhibition. Lastly, three disulfide analogues of largazole were prepared in order to utilize a
different prodrug strategy to modulate the pharmacokinetic properties of largazole.
Through these analogues it was shown that C2 position can be modified significantly
without a major loss in activity while also eliciting minimal changes in isoform-selectivity. While
the Zn2+-binding group plays a major role in HDAC inhibition, it was also shown that the thiol
can be replaced by other functionalities while still retaining inhibitory activity. Lastly, the use of
a disulfide prodrug strategy was shown to affect pharmacokinetic properties resulting in varying
functional responses in vitro and in vivo.
v
Largazole is already an impressive HDAC inhibitor that shows incredible promise.
However, in order to further develop this natural product into an anti-cancer therapeutic as well as
a chemical probe, improvements in the areas of pharmacokinetics as well as isoform-selectivity
are required. Through these studies we plan on building upon existing structure–activity
relationships to further our understanding of largazole’s mechanism of inhibition so that we may
improve these properties and ultimately develop largazole into an efficient HDAC inhibitor that
may be used as an anti-cancer therapeutic as well as a chemical probe for the studying of
biochemical systems.
Resumo:
During oncogenesis, cancer cells go through metabolic reprogramming to maintain their high growth rates and adapt to changes in the microenvironment and the lack of essential nutrients. Several types of cancer are dependent on de novo fatty acid synthesis to sustain their growth rates by providing precursors to construct membranes and produce vital signaling lipids. Fatty acid synthase (FASN) catalyze the terminal step of de novo fatty acid synthesis and it is highly expressed in many types of cancers where it’s up-regulation is correlated with cancer aggressiveness and low therapeutic outcome. Many FASN inhibitors were developed and showed potent anticancer activity however, only one inhibitor advanced to early stage clinical trials with some dose limiting toxicities. Using a modified fluorescence-linked enzyme chemoproteomic strategy (FLECS) screen, we identified HS-106, a thiophenopyrimiden FASN inhibitor that has anti-neoplastic activity against breast cancer in vitro and in vivo. HS-106 was able to inhibit both; purified human FASN activity and cellular fatty acid synthesis activity as evaluated by radioactive tracers incorporation into lipids experiments. In proliferation and apoptosis assays, HS-106 was able to block proliferation and induce apoptosis in several breast cancer cell lines. Several rescue experiment and global lipidome analysis were performed to probe the mechanism by which HS-106 induces apoptosis. HS-106 was found to induce several changes in lipids metabolism: (i) inhibit fatty acids synthesis. (ii) Inhibit fatty acids oxidation as indicated by the ability of inhibiting Malonyl CoA accumulation to block HS-106 induced apoptosis and the increase in the abundance of ceramides. (iii) Increase fatty acids uptake and neutral lipids formation as confirmed 14C Palmitate uptake assay and neutral lipids staining. (iv)Inhibit the formation of phospholipids by inhibiting de novo fatty acid synthesis and diverting exogenous fatty acids to neutral lipids. All of these events would lead to disruption in membranes structure and function. HS-106 was also tested in Lapatinib resistant cell lines and it was able to induce apoptosis and synergizes Lapatinib activity in these cell lines. This may be due the disruption of lipid rafts based on the observation that HS-106 reduces the expression of both HER2 and HER3. HS-106 was found to be well tolerated and bioavailable in mice with high elimination rate. HS-106 efficacy was tested in MMTV neu mouse model. Although did not significantly reduced tumor size (alone), HS-106 was able to double the median survival of the mice and showed potent antitumor activity when combined with Carboplatin. Similar results were obtained when same combinations and dosing schedule was used in C3Tag mouse model except for the inability of HS-106 affect mice survival.
From the above, HS-106 represent a novel FASN inhibitor that has anticancer activity both in vivo and in vitro. Being a chemically tractable molecule, the synthetic route to HS-106 is readily adaptable for the preparation of analogs that are similar in structure, suggesting that, the pharmacological properties of HS-106 can be improved.
Resumo:
Three closely related human sec14p-like proteins (hTAP1, 2, and 3, or SEC14L2, 3, and 4, respectively) have been described. These proteins may participate in intracellular lipid transport (phospholipids, squalene, tocopherol analogues and derivatives) or influence regulatory lipid-dependent events. Here, we show that the three recombinant hTAP proteins associate with the Golgi apparatus and mitochondria, and enhance the in vitro transport of radioactively labeled α-tocopherol to mitochondria in the same order of magnitude as the human α-tocopherol transfer protein (α-TTP). hTAP1 and hTAP2 are expressed in several cell lines, whereas the expression level of hTAP3 is low. Expression of hTAP1 is induced in human umbilical cord blood-derived mast cells upon differentiation by interleukin 4. In tissues, the three hTAPs are detectable ubiquitously at low level; pronounced and localized expression is found for hTAP2 and hTAP3 in the perinuclear region in cerebellum, lung, liver and adrenal gland. hTAP3 is well expressed in the epithelial duct cells of several glands, in ovary in endothelial cells of small arteries as well as in granulosa and thecal cells, and in testis in Leydig cells. Thus, the three hTAPs may mediate lipid uptake, secretion, presentation, and sub-cellular localization in a tissue-specific manner, possibly using organelle- and enzyme-specific docking sites.
Resumo:
The tapeworm Echinococcus granulosus is responsible for cystic echinococcosis (CE), a cosmopolitan disease which imposes a significant burden on the health and economy of affected communities. Little is known about the molecular mechanisms whereby E. granulosus is able to survive in the hostile mammalian host environment, avoiding attack by host enzymes and evading immune responses, but protease inhibitors released by the parasite are likely implicated. We identified two nucleotide sequences corresponding to secreted single domain Kunitz type protease inhibitors (EgKIs) in the E. granulosus genome, and their cDNAs were cloned, bacterially expressed and purified. EgKI-1 is highly expressed in the oncosphere (egg) stage and is a potent chymotrypsin and neutrophil elastase inhibitor that binds calcium and reduced neutrophil infiltration in a local inflammation model. EgKI-2 is highly expressed in adult worms and is a potent inhibitor of trypsin. As powerful inhibitors of mammalian intestinal proteases, the EgKIs may play a pivotal protective role in preventing proteolytic enzyme attack thereby ensuring survival of E. granulosus within its mammalian hosts. EgKI-1 may also be involved in the oncosphere in host immune evasion by inhibiting neutrophil elastase and cathepsin G once this stage is exposed to the mammalian blood system. In light of their key roles in protecting E. granulosus from host enzymatic attack, the EgKI proteins represent potential intervention targets to control CE. This is important as new public health measures against CE are required, given the inefficiencies of available drugs and the current difficulties in its treatment and control. In addition, being a small sized highly potent serine protease inhibitor, and an inhibitor of neutrophil chemotaxis, EgKI-1 may have clinical potential as a novel anti-inflammatory therapeutic.