940 resultados para energy efficiency


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Of all the costs associated with the operation and maintenance of wastewater treatment plants (WWTPs), those associated with energy use tend to be the most significant. From this point of view, it is hence logical that energy efficiency and saving strategies should be one of the current focuses of debate amongst those involved with the management of WWTPs. The present study's objective is to determine the correlation between size and energy consumption for a WWTP. To this end, 90 WWTPs currently in service were analysed and their energetic impact quantified in terms of kWh/m3 of water treated. The results obtained demonstrate that energy consumption ratio increases as the size of WWTPs decreases, either in terms of treatment volume or population equivalent served.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The main objectives of this research are (i) to determine the correct use of infrared thermography in the energy analysis of buildings and to verify its application in conducting energy audits thereof; (ii) to conduct a proposal for a standard methodology (with its corresponding final report) for energy audit of buildings based on currently applicable regulations, specifying the parts of the audit process where the authors propose to include thermal inspections by using infrared thermography.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Information technologies (IT) currently represent 2% of CO2 emissions. In recent years, a wide variety of IT solutions have been proposed, focused on increasing the energy efficiency of network data centers. Monitoring is one of the fundamental pillars of these systems, providing the information necessary for adequate decision making. However, today’s monitoring systems (MSs) are partial, specific and highly coupled solutions. This study proposes a model for monitoring data centers that serves as a basis for energy saving systems, offered as a value-added service embedded in a device with low cost and power consumption. The proposal is general in nature, comprehensive, scalable and focused on heterogeneous environments, and it allows quick adaptation to the needs of changing and dynamic environments. Further, a prototype of the system has been implemented in several devices, which has allowed validation of the proposal in addition to identification of the minimum hardware profile required to support the model.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Initiated in May 2011, several months after the Fukushima nuclear disaster, Germany’s energy transformation (Energiewende) has been presented as an irrevocable plan, and – due to the speed of change required – it represents a new quality in Germany’s energy strategy. Its main objectives include: nuclear energy being phased out by 2022, the development of renewable energy sources (OZE), the expansion of transmission networks, the construction of new conventional power plants and an improvement in energy efficiency.The cornerstone of the strategy is the development of renewable energy. Under Germany's amended renewable energy law, the proportion of renewable energy in electricity generation is supposed to increase steadily from the current level of around 20% to approximately 38% in 2020. In 2030, renewable energy is expected to account for 50% of electricity generation. This is expected to increase to 65% in 2040 and to as much as 80% in 2050. The impact of the Energiewende is not limited to the sphere of energy supplies. In the medium and long term, it will change not only to the way the German economy operates, but also the functioning of German society and the state. Facing difficulties with the expansion of transmission networks, the excessive cost of building wind farms, and problems with the stability of electricity supplies, especially during particularly cold winters, the federal government has so far tended to centralise power and limit the independence of the German federal states with regard to their respective energy policies, justifying this with the need for greater co-ordination. The Energiewende may also become the beginning of a "third industrial revolution", i.e. a transition to a green economy and a society based on sustainable development. This will require a new "social contract" that will redefine the relations between the state, society and the economy. Negotiating such a contract will be one of the greatest challenges for German policy in the coming years.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper addresses the urgent need for a sustainable energy transition in the southern and eastern Mediterranean region. It analyses the unsustainable burden of universal energy subsidies and calls for new development paths unlocking the huge potential for low-cost energy efficiency and demand-side management as well as for renewable energy. It argues that a new structure of regional and interconnected energy markets is needed. It then proposes some original approaches regarding the financing of this sustainable energy transition and finally calls for an ambitious, Euro-Mediterranean Energy Roadmap, which should contribute not only to the economic and environmental development of the region, but also to its social and political stability.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

EXECUTIVE SUMMARY All observers agree that energy efficiency must be the cornerstone of any serious EU energy strategy. In this general context, the EU building sector is critical. It represents about 40% of EU final energy consumption (residential houses, public/private offices, commercial buildings, etc.) and approximately 36% of EU CO2 emissions. This is massive. The EU has certainly not been inactive in this field. The Energy Performance in Buildings Directive 2002/91/EC (EPBD) was the first and the main instrument to address the problem of the energy performance of buildings. It has established numerous principles: a reliable methodology which enables the calculation and rating of the energy performance of buildings; minimum energy performance standards for new buildings and existing buildings under major renovation; energy performance certificates; regular inspection of heating and air-conditioning systems; and, finally, quality standards for inspections and energy performance certificates. They were strengthened in 2010 by the recast Directive 2010/31/EU. This directive also introduces a decisive concept for the development of the building sector: ‘nearly zeroenergy buildings’. In 2012, the new Energy Efficiency Directive 2012/27/EU dealt with other aspects. In the building sector, three of them are particularly important. They concern: (1) the establishment of long-term strategies for mobilizing investment in the renovation of the national building stocks; (2) the introduction of energy saving schemes for ‘designated’ energy companies with a view to reducing consumption among ‘final consumers’ by 1.5% annually; and (3), as an option, the setting up of an Energy Efficiency National Fund to support energy efficiency initiatives. This paper also briefly examines the different instruments put in place to disseminate information and consultation, and the EU funding for energy efficiency in buildings. Results, however, have remained limited until now. The improvement of the energy performance of buildings and the rhythm of renovation remain extremely weak. Member States’ unwillingness to timely and properly transpose and implement the Directives continues despite the high degree of flexibility permitted. The decentralized approach chosen for some specific aspects and the differentiation in the application of EPBD standards between Member States do not appear optimal either. Adequate financial schemes remain rare. The permanent deficit of qualified and trained personnel and the inertia of public authorities to make the public understand the stakes in this domain remain problematic. Hence the need to take new initiatives to reap the benefits that the building sector is meant to bring.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

European Union energy policy calls for nothing less than a profound transformation of the EU's energy system: by 2050 decarbonised electricity generation with 80-95% fewer greenhouse gas emissions, increased use of renewables, more energy efficiency, a functioning energy market and increased security of supply are to be achieved. Different EU policies (e.g., EU climate and energy package for 2020) are intended to create the political and regulatory framework for this transformation. The sectorial dynamics resulting from these EU policies already affect the systems of electricity generation, transportation and storage in Europe, and the more effective the implementation of new measures the more the structure of Europe's power system will change in the years to come. Recent initiatives such as the 2030 climate/energy package and the Energy Union are supposed to keep this dynamic up. Setting new EU targets, however, is not necessarily the same as meeting them. The impact of EU energy policy is likely to have considerable geo-economic implications for individual member states: with increasing market integration come new competitors; coal and gas power plants face new renewable challengers domestically and abroad; and diversification towards new suppliers will result in new trade routes, entry points and infrastructure. Where these implications are at odds with powerful national interests, any member state may point to Article 194, 2 of the Lisbon Treaty and argue that the EU's energy policy agenda interferes with its given right to determine the conditions for exploiting its energy resources, the choice between different energy sources and the general structure of its energy supply. The implementation of new policy initiatives therefore involves intense negotiations to conciliate contradicting interests, something that traditionally has been far from easy to achieve. In areas where this process runs into difficulties, the transfer of sovereignty to the European level is usually to be found amongst the suggested solutions. Pooling sovereignty on a new level, however, does not automatically result in a consensus, i.e., conciliate contradicting interests. Rather than focussing on the right level of decision making, European policy makers need to face the (inconvenient truth of) geo-economical frictions within the Union that make it difficult to come to an arrangement. The reminder of this text explains these latter, more structural and sector-related challenges for European energy policy in more detail, and develops some concrete steps towards a political and regulatory framework necessary to overcome them.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Energy Conservation Act (20 ILCS 1115) was signed into law in September 1979. The law requires that the Department provide technical assistance in the development of thermal efficiency standards and lighting efficiency standards to units of local government, upon request by such unit. The law also states that the Department shall provide technical assistance in the development of a program for energy efficiency in procurement to units of local government, upon request by such unit. The Technical Assistance Programs provided under the law are supported by funds provided to the State pursuant to federal acts that provide funds for energy conservation efforts through the use of building codes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The main aim of this thesis is to evaluate the economic and socio-economic viability of energy crops as raw material for bioenergy schemes at the local level. The case examined is Greece, a southern Mediterranean country. Based on the current state, on foreseen trends and on the information presented in the literature review (conducted at the beginning of the study), the main goal was defined as follows: To examine the evidence supporting a strong role for dedicated energy crops local bioenergy developments in Greece, a sector that is forecasted to be increasingly important in the short to medium term.' Two perennial energy crops, cardoon (Cynara cardunculus L.) and giant reed (Arundo donax L.) were evaluated. The thesis analysed their possible introduction in the agricultural system of Rhodope, northern Greece, as alternative land use, through comparative financial appraisal with the main conventional crops. Based on the output of this comparative analysis, the breakeven for the two selected energy crops was defined along with a sensitivity analysis for the risk of the potential implementation. Following, the author performed an economic and socio-economic evaluation of a district heating system fuelled with energy crops in the selected region. Finally, the author, acknowledging that bioenergy deployment should be studied in the context of innovations proceeded in examining the different perceptions of the key groups involved, farmers and potential end users. Results indicated that biomass exploitation for energy purposes is more likely to be accepted when it is seen clearly as one strand in a national energy, environmental and agricultural policy which embraces several sources of renewable energy, and which also encourages energy efficiency and conservation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Shropshire Energy Team initiated this study to examine consumption and associated emissions in the predominantly rural county of Shropshire. Current use of energy is not sustainable in the long term and there are various approaches to dealing with the environmental problems it creates. Energy planning by a local authority for a sustainable future requires detailed energy consumption and environmental information. This information would enable target setting and the implementation of policies designed to encourage energy efficiency improvements and exploitation of renewable energy resources. This could aid regeneration strategies by providing new employment opportunities. Associated reductions in carbon dioxide and other emissions would help to meet national and international environmental targets. In the absence of this detailed information, the objective was to develop a methodology to assess energy consumption and emissions on a regional basis from 1990 onwards for all local planning authorities. This would enable a more accurate assessment of the relevant issues, such that plans are more appropriate and longer lasting. A first comprehensive set of data has been gathered from a wide range of sources and a strong correlation was found between population and energy consumption for a variety of regions across the UK. In this case the methodology was applied to the county of Shropshire to give, for the first time, estimates of primary fuel consumption, electricity consumption and associated emissions in Shropshire for 1990 to 2025. The estimates provide a suitable baseline for assessing the potential contribution renewable energy could play in meeting electricity demand in the country and in reducing emissions. The assessment indicated that in 1990 total primary fuel consumption was 63,518,018 GJ/y increasing to 119,956,465 GJ/y by 2025. This is associated with emissions of 1,129,626 t/y of carbon in 1990 rising to 1,303,282 t/y by 2025. In 1990, 22,565,713 GJ/y of the primary fuel consumption was used for generating electricity rising to 23,478,050 GJ/y in 2025. If targets to reduce primary fuel consumption are reached, then emissions of carbon would fall to 1,042,626 by 2025, if renewable energy targets were also reached then emissions of carbon would fall to 988,638 t/y by 2025.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Faced with a future of rising energy costs there is a need for industry to manage energy more carefully in order to meet its economic objectives. A problem besetting the growth of energy conservation in the UK is that a large proportion of energy consumption is used in a low intensive manner in organisations where they would be responsibility for energy efficiency is spread over a large number of personnel who each see only small energy costs. In relation to this problem in the non-energy intensive industrial sector, an application of an energy management technique known as monitoring and targeting (M & T) has been installed at the Whetstone site of the General Electric Company Limited in an attempt to prove it as a means for motivating line management and personnel to save energy. The objective energy saving for which the M & T was devised is very specific. During early energy conservation work at the site there had been a change from continuous to intermittent heating but the maintenance of the strategy was receiving a poor level of commitment from line management and performance was some 5% - 10% less than expected. The M & T is concerned therefore with heat for space heating for which a heat metering system was required. Metering of the site high pressure hot water system posed technical difficulties and expenditure was also limited. This led to a ‘tin-house' design being installed for a price less than the commercial equivalent. The timespan of work to achieve an operational heat metering system was 3 years which meant that energy saving results from the scheme were not observed during the study. If successful the replication potential is the larger non energy intensive sites from which some 30 PT savings could be expected in the UK.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This thesis investigates the modelling of drying processes for the promotion of market-led Demand Side Management (DSM) as applied to the UK Public Electricity Suppliers. A review of DSM in the electricity supply industry is provided, together with a discussion of the relevant drivers supporting market-led DSM and energy services (ES). The potential opportunities for ES in a fully deregulated energy market are outlined. It is suggested that targeted industrial sector energy efficiency schemes offer significant opportunity for long term customer and supplier benefit. On a process level, industrial drying is highlighted as offering significant scope for the application of energy services. Drying is an energy-intensive process used widely throughout industry. The results of an energy survey suggest that 17.7 per cent of total UK industrial energy use derives from drying processes. Comparison with published work indicates that energy use for drying shows an increasing trend against a background of reducing overall industrial energy use. Airless drying is highlighted as offering potential energy saving and production benefits to industry. To this end, a comprehensive review of the novel airless drying technology and its background theory is made. Advantages and disadvantages of airless operation are defined and the limited market penetration of airless drying is identified, as are the key opportunities for energy saving. Limited literature has been found which details the modelling of energy use for airless drying. A review of drying theory and previous modelling work is made in an attempt to model energy consumption for drying processes. The history of drying models is presented as well as a discussion of the different approaches taken and their relative merits. The viability of deriving energy use from empirical drying data is examined. Adaptive neuro fuzzy inference systems (ANFIS) are successfully applied to the modelling of drying rates for 3 drying technologies, namely convective air, heat pump and airless drying. The ANFIS systems are then integrated into a novel energy services model for the prediction of relative drying times, energy cost and atmospheric carbon dioxide emission levels. The author believes that this work constitutes the first to use fuzzy systems for the modelling of drying performance as an energy services approach to DSM. To gain an insight into the 'real world' use of energy for drying, this thesis presents a unique first-order energy audit of every ceramic sanitaryware manufacturing site in the UK. Previously unknown patterns of energy use are highlighted. Supplementary comments on the timing and use of drying systems are also made. The limitations of such large scope energy surveys are discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This research project has developed a novel decision support system using Geographical Information Systems and Multi Criteria Decision Analysis and used it to develop and evaluate energy-from-waste policy options. The system was validated by applying it to the UK administrative areas of Cornwall and Warwickshire. Different strategies have been defined by the size and number of the facilities, as well as the technology chosen. Using sensitivity on the results from the decision support system, it was found that key decision criteria included those affected by cost, energy efficiency, transport impacts and air/dioxin emissions. The conclusions of this work are that distributed small-scale energy-from-waste facilities score most highly overall and that scale is more important than technology design in determining overall policy impact. This project makes its primary contribution to energy-from-waste planning by its development of a Decision Support System that can be used to assist waste disposal authorities to identify preferred energy-from-waste options that have been tailored specifically to the socio-geographic characteristics of their jurisdictional areas. The project also highlights the potential of energy-from-waste policies that are seldom given enough attention to in the UK, namely those of a smaller-scale and distributed nature that often have technology designed specifically to cater for this market.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The energy consumption and the energy efficiency have become very important issue in optimizing the current as well as in designing the future telecommunications networks. The energy and power metrics are being introduced in order to enable assessment and comparison of the energy consumption and power efficiency of the telecommunications networks and other transmission equipment. The standardization of the energy and power metrics is a significant ongoing activity aiming to define the baseline energy and power metrics for the telecommunications systems. This article provides an up-to-date overview of the energy and power metrics being proposed by the various standardization bodies and subsequently adopted worldwide by the equipment manufacturers and the network operators. © Institut Télécom and Springer-Verlag 2012.and Springer-Verlag 2012.