945 resultados para endothelium-derived hyperpolarizing factor
Resumo:
There is growing evidence that Vitamin D-3 (1,25-dihydroxyvitamin D-3) is involved in brain development. We have recently shown that the brains of newborn rats from Vitamin D-3 deficient dams were larger than controls, had increased cell proliferation, larger lateral ventricles, and reduced cortical thickness. Brains from these animals also had reduced expression of nerve growth factor (NGF) and glial cell line-derived neurotrophic factor. The aim of the current study was to examine if there were any permanent outcomes into adulthood when the offspring of Vitamin D-3 deficient dams were restored to a normal diet. The brains of adult rats were examined at 10 weeks of age after Vitamin D-3 deficiency until birth or weaning. Compared to controls animals that were exposed to transient early Vitamin D-3 deficiency had larger lateral ventricles, reduced NGF protein content, and reduced expression of a number genes involved in neuronal structure, i.e. neurofilament or MAP-2 or neurotransmission, i.e. GABA-(alpha 4). We conclude that transient early life hypovitaminosis D-3 not only disrupts brain development but leads to persistent changes in the adult brain. In light of the high incidence of hypovitammosis D-3 in women of child-bearing age, the public health implications of these findings warrant attention. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
The PC12 and SH-SY5Y cell models have been proposed as potentially realistic models to investigate neuronal cell toxicity. The effects of oxidative stress (OS) caused by both H2O2 and Aβ on both cell models were assessed by several methods. Cell toxicity was quantitated by measuring cell viability using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) viability assay, an indicator of the integrity of the electron transfer chain (ETC), and cell morphology by fluorescence and video microscopy, both of which showed OS to cause decreased viability and changes in morphology. Levels of intracellular peroxide production, and changes in glutathione and carbonyl levels were also assessed, which showed OS to cause increases in intracellular peroxide production, glutathione and carbonyl levels. Differentiated SH-SY5y cells were also employed and observed to exhibit the greatest sensitivity to toxicity. The neurotrophic factor, nerve growth factor (NGF) was shown to cause protection against OS. Cells pre-treated with NGF showed higher viability after OS, generally less apoptotic morphology, recorded less apoptotic nucleiods, generally lower levels of intracellular peroxides and changes in gene expression. The neutrophic factor, brain derived growth factor (BDNF) and ascorbic acid (AA) were also investigated. BDNF showed no specific neuroprotection, however the preliminary data does warrant further investigation. AA showed a 'janus face' showing either anti-oxidant action and neuroprotection or pro-oxidant action depending on the situation. Results showed that the toxic effects of compounds such as Aβ and H2O2 are cell type dependent, and that OS alters glutathione metabolism in neuronal cells. Following toxic insult, glutathione levels are depleted to low levels. It is herein suggested that this lowering triggers an adaptive response causing alterations in glutathione metabolism as assessed by evaluation of glutathione mRNA biosynthetic enzyme expression and the subsequent increase in glutathione peroxidase (GPX) levels.
Resumo:
Cortical pain processing is associated with large-scale changes in neuronal connectivity, resulting from neural plasticity phenomena of which brain-derived neurotrophic factor (BDNF) is a central driver. The common single nucleotide polymorphism Val66Met is associated with reduced BDNF activity. Using the trigeminal pain-related evoked potential (tPREP) to repeated electrical painful stimuli, we investigated whether the methionine substitution at codon 66 of the BDNF gene was associated with changes in cortical processing of noxious stimuli. Fifty healthy volunteers were genotyped: 30 were Val/Val and 20 were Met-carriers. tPREPs to 30 stimuli of the right supraorbital nerve using a concentric electrode were recorded. The N2 and P2 component latencies and the N2-P2 amplitude were measured over the 30 stimuli and separately, by dividing the measurements in 3 consecutive blocks of 10 stimuli. The average response to the 30 stimuli did not differ in latency or amplitude between the 2 genotypes. There was a decrease in the N2-P2 amplitude between first and third block in the Val/Val group but not in Met-carriers. BDNF Val66Met is associated with reduced decremental response to repeated electrical stimuli, possibly as a result of ineffective mechanisms of synaptic memory and brain plasticity associated with the polymorphism. PERSPECTIVE: BDNF Val66Met polymorphism affects the tPREP N2-P2 amplitude decrement and influences cortical pain processing through neurotrophin-induced neural plasticity, or through a direct BDNF neurotransmitter-like effect. Our findings suggest that upcoming BDNF central agonists might in the future play a role in pain management.
Resumo:
Background:Cervical compressive myelopathy, e.g. due to spondylosis or ossification of the posterior longitudinal ligament is a common cause of spinal cord dysfunction. Although human pathological studies have reported neuronal loss and demyelination in the chronically compressed spinal cord, little is known about the mechanisms involved. In particular, the neuroinflammatory processes that are thought to underlie the condition are poorly understood. The present study assessed the localized prevalence of activated M1 and M2 microglia/macrophages in twy/twy mice that develop spontaneous cervical spinal cord compression, as a model of human disease.Methods:Inflammatory cells and cytokines were assessed in compressed lesions of the spinal cords in 12-, 18- and 24-weeks old twy/twy mice by immunohistochemical, immunoblot and flow cytometric analysis. Computed tomography and standard histology confirmed a progressive spinal cord compression through the spontaneously development of an impinging calcified mass.Results:The prevalence of CD11b-positive cells, in the compressed spinal cord increased over time with a concurrent decrease in neurons. The CD11b-positive cell population was initially formed of arginase-1- and CD206-positive M2 microglia/macrophages, which later shifted towards iNOS- and CD16/32-positive M1 microglia/macrophages. There was a transient increase in levels of T helper 2 (Th2) cytokines at 18 weeks, whereas levels of Th1 cytokines as well as brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF) and macrophage antigen (Mac) -2 progressively increased.Conclusions:Spinal cord compression was associated with a temporal M2 microglia/macrophage response, which may act as a possible repair or neuroprotective mechanism. However, the persistence of the neural insult also associated with persistent expression of Th1 cytokines and increased prevalence of activated M1 microglia/macrophages, which may lead to neuronal loss and demyelination despite the presence of neurotrophic factors. This understanding of the aetiopathology of chronic spinal cord compression is of importance in the development of new treatment targets in human disease. © 2013 Hirai et al.
Resumo:
Despite intense investigation, mechanisms that facilitate the emergence of the pre-eclampsia phenotype in women are still unknown. Placental hypoxia, hypertension, proteinuria and oedema are the principal clinical features of this disease. It is speculated that hypoxia-driven disruption of the angiogenic balance involving vascular endothelial growth factor (VEGF)/placenta-derived growth factor (PLGF) and soluble Fms-like tyrosine kinase-1 (sFLT-1, the soluble form of VEGF receptor 1) might contribute to some of the maternal symptoms of pre-eclampsia. However, pre-eclampsia does not develop in all women with high sFLT-1 or low PLGF levels, and it also occurs in some women with low sFLT-1 and high PLGF levels. Moreover, recent experiments strongly suggest that several soluble factors affecting the vasculature are probably elevated because of placental hypoxia in the pre-eclamptic women, indicating that upstream molecular defect(s) may contribute to pre-eclampsia. Here we show that pregnant mice deficient in catechol-O-methyltransferase (COMT) show a pre-eclampsia-like phenotype resulting from an absence of 2-methoxyoestradiol (2-ME), a natural metabolite of oestradiol that is elevated during the third trimester of normal human pregnancy. 2-ME ameliorates all pre-eclampsia-like features without toxicity in the Comt(-/-) pregnant mice and suppresses placental hypoxia, hypoxia-inducible factor-1alpha expression and sFLT-1 elevation. The levels of COMT and 2-ME are significantly lower in women with severe pre-eclampsia. Our studies identify a genetic mouse model for pre-eclampsia and suggest that 2-ME may have utility as a plasma and urine diagnostic marker for this disease, and may also serve as a therapeutic supplement to prevent or treat this disorder.
Resumo:
This study tested the multi-society generalizability of an eight-syndrome assessment model derived from factor analyses of American adults' self-ratings of 120 behavioral, emotional, and social problems. The Adult Self-Report (ASR; Achenbach and Rescorla 2003) was completed by 17,152 18-59-year-olds in 29 societies. Confirmatory factor analyses tested the fit of self-ratings in each sample to the eight-syndrome model. The primary model fit index (Root Mean Square Error of Approximation) showed good model fit for all samples, while secondary indices showed acceptable to good fit. Only 5 (0.06%) of the 8,598 estimated parameters were outside the admissible parameter space. Confidence intervals indicated that sampling fluctuations could account for the deviant parameters. Results thus supported the tested model in societies differing widely in social, political, and economic systems, languages, ethnicities, religions, and geographical regions. Although other items, societies, and analytic methods might yield different results, the findings indicate that adults in very diverse societies were willing and able to rate themselves on the same standardized set of 120 problem items. Moreover, their self-ratings fit an eight-syndrome model previously derived from self-ratings by American adults. The support for the statistically derived syndrome model is consistent with previous findings for parent, teacher, and self-ratings of 11/2-18-year-olds in many societies. The ASR and its parallel collateral-report instrument, the Adult Behavior Checklist (ABCL), may offer mental health professionals practical tools for the multi-informant assessment of clinical constructs of adult psychopathology that appear to be meaningful across diverse societies. © 2014 Springer Science+Business Media New York.
Resumo:
Advancements in the micro-and nano-scale fabrication techniques have opened up new avenues for the development of portable, scalable and easier-to-use biosensors. Over the last few years, electrodes made of carbon have been widely used as sensing units in biosensors due to their attractive physiochemical properties. The aim of this research is to investigate different strategies to develop functionalized high surface carbon micro/nano-structures for electrochemical and biosensing devices. High aspect ratio three-dimensional carbon microarrays were fabricated via carbon microelectromechanical systems (C-MEMS) technique, which is based on pyrolyzing pre-patterned organic photoresist polymers. To further increase the surface area of the carbon microstructures, surface porosity was introduced by two strategies, i.e. (i) using F127 as porogen and (ii) oxygen reactive ion etch (RIE) treatment. Electrochemical characterization showed that porous carbon thin film electrodes prepared by using F127 as porogen had an effective surface area (Aeff 185%) compared to the conventional carbon electrode. To achieve enhanced electrochemical sensitivity for C-MEMS based functional devices, graphene was conformally coated onto high aspect ratio three-dimensional (3D) carbon micropillar arrays using electrostatic spray deposition (ESD) technique. The amperometric response of graphene/carbon micropillar electrode arrays exhibited higher electrochemical activity, improved charge transfer and a linear response towards H2O2 detection between 250&mgr;M to 5.5mM. Furthermore, carbon structures with dimensions from 50 nano-to micrometer level have been fabricated by pyrolyzing photo-nanoimprint lithography patterned organic resist polymer. Microstructure, elemental composition and resistivity characterization of the carbon nanostructures produced by this process were very similar to conventional photoresist derived carbon. Surface functionalization of the carbon nanostructures was performed using direct amination technique. Considering the need for requisite functional groups to covalently attach bioreceptors on the carbon surface for biomolecule detection, different oxidation techniques were compared to study the types of carbon-oxygen groups formed on the surface and their percentages with respect to different oxidation pretreatment times. Finally, a label-free detection strategy using signaling aptamer/protein binding complex for platelet-derived growth factor oncoprotein detection on functionalized three-dimensional carbon microarrays platform was demonstrated. The sensor showed near linear relationship between the relative fluorescence difference and protein concentration even in the sub-nanomolar range with an excellent detection limit of 5 pmol.
Resumo:
Neurodegenerative diseases are frequently studied due to the increasing number of cases associated with the populational ageing and to the impact on the conditions on the quality of life. Parkinson’s disease (DP) is the second most frequent neurodegenerative disease. Despite the fact that its etiology is not completely understood, it is known that DP is caused by environmental and genetic factors. Thus, the investigation of etiologic factors and mechanisms responsible for the changes that lead to DP may help early diagnostic and prevention. A possible association between DP and the common polymorphism of Brain Derived Neurotrophic Factor (BDNF) G196A (Val66Met) has been suggested by different studies with contrasting results. For this reason, the aim of this study is to investigate if the BDNF Val66Met polymorphism is related to susceptibility to DP in a cohort of Brazilian patients. Additionaly, we verify if the presence of the polymorphism implies in alterations in the BDNF whole blood concentrations, as well as variations in symptomatology. The sample comprised Brazilian patients accompanied by the neurology service of the Onofre Lopes University Hospital (HUOL) and healthy controls (CTRL). The motor aspects of DP were evaluated by Hoehn e Yahr Scale (HY), Unified Parkinson’s Disease Rating Scale (UPDRS) and Schwab & England Scale (SE). For the evaluation of non-motor symptoms were used the following instruments: Frontal Assessment Battery (BAF), Mini-Mental State Examination (MEEM), Beck Depression Inventory (IDB) and the Beck Anxiety Inventory (IAB). Blood samples were collected for BDNF Val66Met polymorphism genotyping and BDNF whole blood measurement. As expected, DP patients performed worse in motor, cognitive and emotional battery of questionnaires. Alleles distribution between DP and CTRL was not significantly different, but the A/G genotype was significantly associated with a protector factor for DP. In contrast, the G/G genotype was significantly associated with depression and anxiety development in DP patients. However, BDNF concentrations were not different between genotypes or groups. This is the first study of genetic association of this polymorphism with DP in Brazilian subjects and the first one that associate A/G genotype with protection against DP.
Resumo:
Nos períodos críticos de plasticidade neural ocorre uma maior permissividade do sistema nervoso ao ambiente, por isto, a ação do estresse sobre o individuo e suas repercussões sobre áreas responsáveis pelo controle dos sistemas de resposta ao estresse e por funções cognitivas complexas vem recebendo bastante atenção. A utilização de modelos experimentais translacionais tem sido imprescindível na elucidação destes mecanismos e das patologias associadas. Diante disto, este trabalho investigou os efeitos do estresse social sobre parâmetros fisiológicos, comportamentais, cognitivos e sobre a neurogênese no córtex pré-frontal (CPF) durante um período crítico de plasticidade cerebral, a fase juvenil, em machos de Callithrix jacchus. Durante cinco meses, 5 animais foram acompanhados em suas famílias (GF) e 5 animais foram isolados socialmente por 4 meses (GI), após um mês em observação em ambiente familiar (fase basal- FB). Ao final do 5º mês foram aplicados 2 testes de memória de trabalho (MT) nos animais GF e GI. Em seguida, 3 animais de cada grupo foram sacrificados para análise do fator de neurogênese BDNF ( Brain Derived Neurotrophic Factor) por imunofluorescência no CPF (sub-regiões orbitofrontal e lateral). Os animais do GF não variaram significativamente o cortisol ao longo do estudo, enquanto o GI elevou o cortisol e comportamentos indicadores de ansiedade (CA) na primeira semana do isolamento. Em seguida, o GI apresentou uma redução no cortisol, nos CA, no peso corporal e um aumento de comportamentos estereotipados e da anedonia, alterações tipicamente depressivas em primatas não-humanos. Ao final, o GI apresentaram níveis de cortisol menores que em FB. Ambos os grupos apresentaram dificuldades em realizar e aprender as tarefas cognitivas e a presença de BDNF no córtex pré-frontal foi independente do grupo (GF ou GI), porém correlacionou-se com os níveis de cortisol presentes na ultima semana do estudo, e os animais com presença de BDNF no CPF lateral e orbitofrontal apresentaram maiores níveis de cortisol. Estes resultados contribuem no processo de validação do sagui como um bom modelo psiquiátrico translacional e aponta para possibilidade de estudos sobre transtornos depressivos na juventude e suas repercussões posteriores. Além disto, os resultados observados para as tarefas cognitivas levou-nos a fazer uma releitura dos protocolos utilizados em estudos de memoria de trabalho com animais adultos desta espécie, com a finalidade de aprimora-los facilitando a aprendizagem em animais juvenis, naives e em situações de estresse. Ademais, evidenciou-se pela primeira vez a relação do estresse, cortisol e níveis de BDNF, em animais juvenis desta espécie, com a fim de contribuir com sua utilização como modelo animal neurocognitivo.
Resumo:
Omega (n)-3 polyunsaturated fatty acids (PUFA) have beneficial effects in neuropsychiatric illnesses. The goals of this thesis were to determine the effects of feeding diets varying in n-3 PUFA on brain fatty acid composition, and neurotrophin and myelin-related gene expression of the brain in an age, sex, and region-specific manner. A diet high in n-3 PUFA altered phospholipid docosahexaenoic acid (DHA) and oleic acid composition in an age, sex, and region-specific manner. Diet had no effect on the mRNA expression of brain-derived neurotrophic factor (BDNF) and tropomyosin-receptor kinase-B (TrkB); however, stearoyl-CoA desaturase-1 (SCD1) and myelin basic protein (MBP) gene expression increased in offspring fed a diet high in n-3 PUFA in an age, sex, and region-specific manner. DHA treatment to ex vivo cerebral cortical cells showed an increase in BDNF, TrkB, SCD1, and MBP mRNA expression compared to control cells. The mRNA expression of BDNF and SCD1 was higher in DHA treated cells compared to arachidonic acid treated cells. Overall, the data presented in this thesis suggests that the potential benefits of n-3 PUFA on brain function are sex, age and brain-region specific.
Resumo:
High-grade Brainstem Glioma (BSG), also known as Diffuse Intrinsic Pontine Glioma (DIPG), is an incurable pediatric brain cancer. Increasing evidence supports the existence of regional differences in gliomagenesis such that BSG is considered a distinct disease from glioma of the cerebral cortex (CG). In an effort to elucidate unique characteristics of BSG, we conducted expression analysis of mouse PDGF-B-driven BSG and CG initiated in Nestin progenitor cells and identified a short list of expression changes specific to the brainstem gliomagenesis process, including abnormal upregulation of paired box 3 (Pax3). In the neonatal mouse brain, Pax3 expression marks a subset of brainstem progenitor cells, while it is absent from the cerebral cortex, mirroring its regional expression in glioma. Ectopic expression of Pax3 in normal brainstem progenitors in vitro shows that Pax3 inhibits apoptosis. Pax3-induced inhibition of apoptosis is p53-dependent, however, and in the absence of p53, Pax3 promotes proliferation of brainstem progenitors. In vivo, Pax3 enhances PDGF-B-driven gliomagenesis by shortening tumor latency and increasing tumor penetrance and grade, in a region-specific manner, while loss of Pax3 function extends survival of PDGF-B-driven;p53-deficient BSG-bearing mice by 33%. Importantly, Pax3 is regionally expressed in human glioma as well, with high PAX3 mRNA characterizing 40% of human BSG, revealing a subset of tumors that significantly associates with PDGFRA alterations, amplifications of cell cycle regulatory genes, and is exclusive of ACVR1 mutations. Collectively, these data suggest that regional Pax3 expression not only marks a novel subset of BSG but also contributes to PDGF-B-induced brainstem gliomagenesis.
Resumo:
Multiple lines of evidence reveal that activation of the tropomyosin related kinase B (TrkB) receptor is a critical molecular mechanism underlying status epilepticus (SE) induced epilepsy development. However, the cellular consequences of such signaling remain unknown. To this point, localization of SE-induced TrkB activation to CA1 apical dendritic spines provides an anatomic clue pointing to Schaffer collateral-CA1 synaptic plasticity as one potential cellular consequence of TrkB activation. Here, we combine two-photon glutamate uncaging with two photon fluorescence lifetime imaging microscopy (2pFLIM) of fluorescence resonance energy transfer (FRET)-based sensors to specifically investigate the roles of TrkB and its canonical ligand brain derived neurotrophic factor (BDNF) in dendritic spine structural plasticity (sLTP) of CA1 pyramidal neurons in cultured hippocampal slices of rodents. To begin, we demonstrate a critical role for post-synaptic TrkB and post-synaptic BDNF in sLTP. Building on these findings, we develop a novel FRET-based sensor for TrkB activation that can report both BDNF and non-BDNF activation in a specific and reversible manner. Using this sensor, we monitor the spatiotemporal dynamics of TrkB activity during single-spine sLTP. In response to glutamate uncaging, we report a rapid (onset less than 1 minute) and sustained (lasting at least 20 minutes) activation of TrkB in the stimulated spine that depends on N-methyl-D-aspartate receptor (NMDAR)-Ca2+/Calmodulin dependent kinase II (CaMKII) signaling as well as post-synaptically synthesized BDNF. Consistent with these findings, we also demonstrate rapid, glutamate uncaging-evoked, time-locked release of BDNF from single dendritic spines using BDNF fused to superecliptic pHluorin (SEP). Finally, to elucidate the molecular mechanisms by which TrkB activation leads to sLTP, we examined the dependence of Rho GTPase activity - known mediators of sLTP - on BDNF-TrkB signaling. Through the use of previously described FRET-based sensors, we find that the activities of ras-related C3 botulinum toxin substrate 1 (Rac1) and cell division control protein 42 (Cdc42) require BDNF-TrkB signaling. Taken together, these findings reveal a spine-autonomous, autocrine signaling mechanism involving NMDAR-CaMKII dependent BDNF release from stimulated dendritic spines leading to TrkB activation and subsequent activation of the downstream molecules Rac1 and Cdc42 in these same spines that proves critical for sLTP. In conclusion, these results highlight structural plasticity as one cellular consequence of CA1 dendritic spine TrkB activation that may potentially contribute to larger, circuit-level changes underlying SE-induced epilepsy.
Resumo:
Autism spectrum disorder (ASD) is a complex heterogeneous neurodevelopmental disorder characterized by alterations in social functioning, communicative abilities, and engagement in repetitive or restrictive behaviors. The process of aging in individuals with autism and related neurodevelopmental disorders is not well understood, despite the fact that the number of individuals with ASD aged 65 and older is projected to increase by over half a million individuals in the next 20 years. To elucidate the effects of aging in the context of a modified central nervous system, we investigated the effects of age on the BTBR T + tf/j mouse, a well characterized and widely used mouse model that displays an ASD-like phenotype. We found that a reduction in social behavior persists into old age in male BTBR T + tf/j mice. We employed quantitative proteomics to discover potential alterations in signaling systems that could regulate aging in the BTBR mice. Unbiased proteomic analysis of hippocampal and cortical tissue of BTBR mice compared to age-matched wild-type controls revealed a significant decrease in brain derived neurotrophic factor and significant increases in multiple synaptic markers (spinophilin, Synapsin I, PSD 95, NeuN), as well as distinct changes in functional pathways related to these proteins, including "Neural synaptic plasticity regulation" and "Neurotransmitter secretion regulation." Taken together, these results contribute to our understanding of the effects of aging on an ASD-like mouse model in regards to both behavior and protein alterations, though additional studies are needed to fully understand the complex interplay underlying aging in mouse models displaying an ASD-like phenotype.
Resumo:
BACKGROUND: Although most gastrointestinal stromal tumours (GIST) carry oncogenic mutations in KIT exons 9, 11, 13 and 17, or in platelet-derived growth factor receptor alpha (PDGFRA) exons 12, 14 and 18, around 10% of GIST are free of these mutations. Genotyping and accurate detection of KIT/PDGFRA mutations in GIST are becoming increasingly useful for clinicians in the management of the disease. METHOD: To evaluate and improve laboratory practice in GIST mutation detection, we developed a mutational screening quality control program. Eleven laboratories were enrolled in this program and 50 DNA samples were analysed, each of them by four different laboratories, giving 200 mutational reports. RESULTS: In total, eight mutations were not detected by at least one laboratory. One false positive result was reported in one sample. Thus, the mean global rate of error with clinical implication based on 200 reports was 4.5%. Concerning specific polymorphisms detection, the rate varied from 0 to 100%, depending on the laboratory. The way mutations were reported was very heterogeneous, and some errors were detected. CONCLUSION: This study demonstrated that such a program was necessary for laboratories to improve the quality of the analysis, because an error rate of 4.5% may have clinical consequences for the patient.
Resumo:
Coronary heart disease is a major cause of morbidity and mortality worldwide. Percutaneous coronary intervention (PCI) has become the most widely used method of coronary artery revascularisation. The use of stents to hold open atherosclerosis induced arterial narrowing has significantly reduced elastic recoil and acute vessel occlusion following balloon angioplasty. However, bare metal stents have been associated with in-stent restenosis attributed to vascular smooth muscle cell (VSMC) hyperplasia and excessive neointimal formation. The resultant luminal renarrowing may manifest clinically with the return of symptoms such as chest pain or shortness of breath. The development of drug eluting stents has significantly reduced the incidence of in-stent restenosis (ISR). Unfortunately the antiproliferative medications used not only inhibit VSMC proliferation but also re-endothelialisation of the stented vessel. In addition, the drug impregnated polymer coating has been associated with a chronic inflammatory response within the vessel wall predisposing patients to stent thrombosis. Thus the identification of novel therapies which promote vessel healing without excessive proliferative or inflammatory response may improve long term outcome and reduce the need for repeated revascularisation. MicroRNAs (miRs) are short (18-25 nucleotide) non-coding RNAs acting to regulate gene expression. By binding to the 3’untranslated region of mRNA they act to fine tune gene expression either by mRNA degradation or translational repression. Originally identified in coordinating tissue development microRNAs have also been shown to play important roles coordinating the inflammatory response and in numerous cardiovascular diseases. MiR-21 has been identified in human atherosclerotic plaques, arteriosclerosis obliterans and abdominal aortic aneurysms. In addition, its up regulation has been documented in preclinical models of vascular injury. This study sought to identify the role of miR-21 in the development of ISR. Utilising a small animal model of stenting and in vitro techniques, we sought to investigate its influence upon VSMC and immune cell response following stenting. 19 The refinement of a murine stenting model within the Baker laboratory and the electrochemical dissolution of the metal stent from within harvested vascular tissues significantly improved the ability to perform detailed histological analysis. In addition, identification of miRNAs using in situ hybridisation was achieved for the first time within stented tissue. Neointimal formation and ISR was significantly reduced in mice in which miR-21 had been genetically deleted. In addition, neointimal composition was found to be altered in miR-21 KO mice with reductions in VSMC and elastin content demonstrated. Importantly, no difference in re-endothelialisation was observed. In vitro analysis demonstrated that VSMCs from miR-21 KO mice had both reduced proliferative and migratory capacity following platelet derived growth factor stimulation. Molecular analysis revealed that these differences may, at least in part, be due to de-repression of programmed cell death 4 (PDCD4). PDCD4 is a known miR-21 target within VSMCs implicated in the suppression of proliferation and promotion of apoptosis. Unfortunately, initial attempts at antimiR mediated knockdown of miR-21 in vivo, failed to produce a similar change in the suppression of ISR. Furthermore, a significant alteration in macrophage polarisation state within the neointima of miR-21 WT and KO mice was noted. Immunohistochemical staining revealed a preponderance of anti-inflammatory M2 macrophages in KO mice. Analysis of bone marrow derived macrophages from miR-21 KO mice demonstrated an increased level of the peroxisome proliferation activating receptor-γ (PPARγ) which facilitates M2 polarisation. Importantly, significant alterations in numerous pro-inflammatory cytokines, which also have mitogenic effects, were also found following genetic deletion of miR-21. In Summary, this is the first study to look at miRs in the development of ISR. MiR-21 plays an important role in the development of ISR by influencing the proliferative response of VSMCs and modulating the immune response following stent deployment. Further attempts to modulate miR-21 expression following PCI may reduce ISR and the need for repeat revascularisation while also reducing the risk of stent thrombosis.