996 resultados para effective microorganisms
Resumo:
The refractive indices of thin films, containing dielectric and voids in an oblique columnar structure, are, modelled in the quasi-static limit. The dielectric function is shown to be strongly dependent on the angle of incidence and on the columnar orientation for p-polarized light. This model is applied to model ZnS thin films with oblique columnar structures and the computed results have been given.
Extended effective medium model for refractive indices of thin films with oblique columnar structure
Resumo:
The refractive indices of thin films, containing dielectric and voids in an oblique columnar structure, are modeled by extended effective medium in the quasi-static limit. The dielectric function is shown to be strongly dependent on the angle of incidence and on the columnar orientation for p-polarized light. This model is applied to model ZrO2 thin films with oblique columnar structures and the computed results, with the Maxwell Garnett, the Bragg-Pippard, and the Bruggeman formalisms, have been given. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Genetic structure and average long-term connectivity and effective size of mutton snapper (Lutjanus analis) sampled from offshore localities in the U.S. Caribbean and the Florida Keys were assessed by using nuclear-encoded microsatellites and a fragment of mitochondrial DNA. No significant differences in allele, genotype (microsatellites), or haplotype (mtDNA) distributions were detected; tests of selective neutrality (mtDNA) were nonsignificant after Bonferroni correction. Heuristic estimates of average long-term rate of migration (proportion of migrant individuals/generation) between geographically adjacent localities varied from 0.0033 to 0.0054, indicating that local subpopulations could respond independently of environmental perturbations. Estimates of average longterm effective population sizes varied from 341 to 1066 and differed significantly among several of the localities. These results indicate that over time larval drift and interregional adult movement may not be sufficient to maintain population sustainability across the region and that there may be different demographic stocks at some of the localities studied. The estimate of long-term effective population size at the locality offshore of St. Croix was below the minimum threshold size considered necessary to maintain the equilibrium between the loss of adaptive genetic variance from genetic drift and its replacement by mutation. Genetic variability in mutton snapper likely is maintained at the intraregional level by aggregate spawning and random mating of local populations. This feature is perhaps ironic in that aggregate spawning also renders mutton snapper especially vulnerable to overexploitation.
Resumo:
Otter trawls are very effective at capturing flatfish, but they can affect the seaf loor ecosystems where they are used. Alaska f latf ish trawlers have very long cables (called sweeps) between doors and net to herd fish into the path of the trawl. These sweeps, which ride on and can disturb the seaf loor, account for most of the area affected by these trawls and hence a large proportion of the potential for damage to seaf loor organisms. We examined modifications to otter trawls, such that disk clusters were installed at 9-m intervals to raise trawl sweeps small distances above the seafloor, greatly reducing the area of direct seafloor contact. A critical consideration was whether flatfish would still be herded effectively by these sweeps. We compared conventional and modified sweeps using a twin trawl system and analyzed the volume and composition of the resulting catches. We tested sweeps raised 5, 7.5, and 10 cm and observed no significant losses of flatfish catch until sweeps were raised 10 cm, and those losses were relatively small (5–10%). No size composition changes were detected in the flatfish catches. Alaska pollock (Theragra chalcogramma) were captured at higher rates with two versions of the modified sweeps. Sonar observations of the sweeps in operation and the seaf loor after passage confirmed that the area of direct seafloor contact was greatly reduced by the modified sweep
Resumo:
In the present study we have investigated the population genetic structure of albacore (Thunnus alalunga, Bonnaterre 1788) and assessed the loss of genetic diversity, likely due to overfishing, of albacore population in the North Atlantic Ocean. For this purpose, 1,331 individuals from 26 worldwide locations were analyzed by genotyping 75 novel nuclear SNPs. Our results indicated the existence of four genetically homogeneous populations delimited within the Mediterranean Sea, the Atlantic Ocean, the Indian Ocean and the Pacific Ocean. Current definition of stocks allows the sustainable management of albacore since no stock includes more than one genetic entity. In addition, short-and long-term effective population sizes were estimated for the North Atlantic Ocean albacore population, and results showed no historical decline for this population. Therefore, the genetic diversity and, consequently, the adaptive potential of this population have not been significantly affected by overfishing.
Resumo:
We assayed allelic variation at 19 nuclear-encoded microsatellites among 1622 Gulf red snapper (Lutjanus campechanus) sampled from the 1995 and 1997 cohorts at each of three offshore localities in the northern Gulf of Mexico (Gulf). Localities represented western, central, and eastern subregions within the northern Gulf. Number of alleles per microsatellite per sample ranged from four to 23, and gene diversity ranged from 0.170 to 0.917. Tests of conformity to Hardy-Weinberg equilibrium expectations and of genotypic equilibrium between pairs of micro-satellites were generally nonsignificant following Bonferroni correction. Significant genic or genotypic heterogeneity (or both) among samples was detected at four microsatellites and over all microsatellites. Levels of divergence among samples were low (FST ≤0.001). Pairwise exact tests revealed that six of seven “significant” comparisons involved temporal rather than spatial heterogeneity. Contemporaneous or variance effective size (NeV) was estimated from the temporal variance in allele frequencies by using a maximum-likelihood method. Estimates of NeV ranged between 1098 and >75,000 and differed significantly among localities; the NeV estimate for the sample from the northcentral Gulf was >60 times as large as the estimates for the other two localities. The differences in variance effective size could ref lect differences in number of individuals successfully reproducing, differences in patterns and intensity of immigration, or both, and are consistent with the hypothesis, supported by life-history data, that different “demographic stocks” of red snapper are found in the northern Gulf. Estimates of NeV for red snapper in the northern Gulf were at least three orders of magnitude lower than current estimates of census size (N). The ratio of effective to census size (Ne/N) is far below that expected in an ideal population and may reflect high variance in individual reproductive success, high temporal and spatial variance in productivity among subregions or a combination of the two.
Resumo:
Global fishmeal production from wild-catch sources cannot continue to increase indefinitely; suitable alternatives have to be found for sustainable aquaculture. Plant-based aquafeed seems to be the ideal alternative to this, but has its own limitations. Plant ingredients are rich in phytic acid, which reduces the bioavailability of nutrients like minerals and protein to the fish, thereby causing aquaculture pollution. Dietary phytase treatment reduces the aquaculture pollution by improving the bioavailability of nutrients, and reduces the feed cost as evident from poultry and piggery. Phytase activity is highly dependent upon the pH of the gut. Unlike mammals, fish are either gastric or agastric, and hence, the action of dietary phytase varies from species to species. In this article, the authors attempt to summarise various effects of phytase on nutrient utilization, growth of fish and aquatic pollution.
Resumo:
Os métodos tradicionais de estimular a produção de petróleo, envolvendo a injeção de água, vapor, gás ou outros produtos, estabeleceram a base conceitual para novos métodos de extração de óleo, utilizando micro-organismos e processos biológicos. As tecnologias que empregam os processos de bioestimulação e bioaumentação já são amplamente utilizadas em inúmeras aplicações industriais, farmacêuticas e agroindustriais, e mais recentemente, na indústria do petróleo. Dada a enorme dimensão econômica da indústria do petróleo, qualquer tecnologia que possa aumentar a produção ou o fator de recuperação de um campo petrolífero gera a expectativa de grandes benefícios técnicos, econômicos e estratégicos. Buscando avaliar o possível impacto de MEOR (microbial enhanced oil recovery) no fator de recuperação das reservas de óleo e gás no Brasil, e quais técnicas poderiam ser mais indicadas, foi feito um amplo estudo dessas técnicas e de diversos aspectos da geologia no Brasil. Também foram realizados estudos preliminares de uma técnica de MEOR (bioacidificação) com possível aplicabilidade em reservatórios brasileiros. Os resultados demonstram que as técnicas de MEOR podem ser eficazes na produção, solubilização, emulsificação ou transformação de diversos compostos, e que podem promover outros efeitos físicos no óleo ou na matriz da rocha reservatório. Também foram identificadas bacias petrolíferas brasileiras e recursos não convencionais com maior potencial para utilização de determinadas técnicas de MEOR. Finalmente, foram identificadas algumas técnicas de MEOR que merecem maiores estudos, entre as técnicas mais consolidadas (como a produção de biossurfatantes e biopolímeros, e o controle da biocorrosão), e as que ainda não foram completamente viabilizadas (como a gaseificação de carvão, óleo e matéria orgânica; a dissociação microbiana de hidratos de gás; a bioconversão de CO2 em metano; e a bioacidificação). Apesar de seu potencial ainda não ser amplamente reconhecido, as técnicas de MEOR representam o limiar de uma nova era na estimulação da produção de recursos petrolíferos existentes, e até mesmo para os planos de desenvolvimento de novas áreas petrolíferas e recursos energéticos. Este trabalho fornece o embasamento técnico para sugerir novas iniciativas, reconhecer o potencial estratégico de MEOR, e para ajudar a realizar seu pleno potencial e seus benefícios.
Resumo:
The use of antibiotics and other chemicals in controlling shrimp pathogens become ineffective as the strains grow more resistant to these chemicals. Moreover, the bacterial pathogen (Vibrio harveyi) produced biofilm coating that protects it from dying and disinfection procedures that are followed during pond preparation. Biological control is being considered as an alternative means of preventing shrimp disease outbreak. The main principle behind biological control is to enhance the growth of beneficial microorganisms which serve as antagonists or target pathogens. The paper discusses shrimp and tilapia crop rotation as a form of effective biological control, a technique which is already being practiced in Indonesia and the Philippines.
Resumo:
The Global Coral Reef Monitoring Network (GCRMN) is an operational unit of the International Coral Reef Initiative (ICRI), established in 1995 and maintained by the Australian Institute of Marine Science (AIMS). The main responsibilities are to provide data and information on the global status of coral reefs, assess how people use and interact with reefs, assist coral reef management, and raise awareness among all stakeholders of the status of reefs and the need for urgent action. It is represented by 17 regional nodes, with overall coordination by a global coordinator based at AIMS.