890 resultados para dual scaling
Resumo:
Rensch’s rule, which states that the magnitude of sexual size dimorphism tends to increase with increasing body size, has evolved independently in three lineages of large herbivorous mammals: bovids (antelopes), cervids (deer), and macropodids (kangaroos). This pattern can be explained by a model that combines allometry,life-history theory, and energetics. The key features are thatfemale group size increases with increasing body size and that males have evolved under sexual selection to grow large enough to control these groups of females. The model predicts relationships among body size and female group size, male and female age at first breeding,death and growth rates, and energy allocation of males to produce body mass and weapons. Model predictions are well supported by data for these megaherbivores. The model suggests hypotheses for why some other sexually dimorphic taxa, such as primates and pinnipeds(seals and sea lions), do or do not conform to Rensh’s rule.
Resumo:
A model for estimating the turbulent kinetic energy dissipation rate in the oceanic boundary layer, based on insights from rapid-distortion theory, is presented and tested. This model provides a possible explanation for the very high dissipation levels found by numerous authors near the surface. It is conceived that turbulence, injected into the water by breaking waves, is subsequently amplified due to its distortion by the mean shear of the wind-induced current and straining by the Stokes drift of surface waves. The partition of the turbulent shear stress into a shear-induced part and a wave-induced part is taken into account. In this picture, dissipation enhancement results from the same mechanism responsible for Langmuir circulations. Apart from a dimensionless depth and an eddy turn-over time, the dimensionless dissipation rate depends on the wave slope and wave age, which may be encapsulated in the turbulent Langmuir number La_t. For large La_t, or any Lat but large depth, the dissipation rate tends to the usual surface layer scaling, whereas when Lat is small, it is strongly enhanced near the surface, growing asymptotically as ɛ ∝ La_t^{-2} when La_t → 0. Results from this model are compared with observations from the WAVES and SWADE data sets, assuming that this is the dominant dissipation mechanism acting in the ocean surface layer and statistical measures of the corresponding fit indicate a substantial improvement over previous theoretical models. Comparisons are also carried out against more recent measurements, showing good order-of-magnitude agreement, even when shallow-water effects are important.
Resumo:
A commercial inactivated iron restricted Salmonella Typhimurium and Salmonella Enterifidis vaccine was used to vaccinate chicks at I day and again at 4 weeks of age, with challenge by a high and a low dose of S. Typhimurium given either orally or by contact with seeder birds inoculated orally with a high dose of S. Typhimurium. In all three challenge regimes, the shedding of challenge strain was reduced significantly (p < 0.05) in vaccinated birds compared with unvaccinated controls. Vaccination reduced colonisation of internal organs after challenge by contact seeder birds. However, no effect of vaccination upon colonisation of internal organs after either high or low oral challenge was apparent. In conclusion, the data indicate that the vaccine should be a useful tool in the control of S. Typhimurium infection in chickens. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Top Down Induction of Decision Trees (TDIDT) is the most commonly used method of constructing a model from a dataset in the form of classification rules to classify previously unseen data. Alternative algorithms have been developed such as the Prism algorithm. Prism constructs modular rules which produce qualitatively better rules than rules induced by TDIDT. However, along with the increasing size of databases, many existing rule learning algorithms have proved to be computational expensive on large datasets. To tackle the problem of scalability, parallel classification rule induction algorithms have been introduced. As TDIDT is the most popular classifier, even though there are strongly competitive alternative algorithms, most parallel approaches to inducing classification rules are based on TDIDT. In this paper we describe work on a distributed classifier that induces classification rules in a parallel manner based on Prism.
Resumo:
The fast increase in the size and number of databases demands data mining approaches that are scalable to large amounts of data. This has led to the exploration of parallel computing technologies in order to perform data mining tasks concurrently using several processors. Parallelization seems to be a natural and cost-effective way to scale up data mining technologies. One of the most important of these data mining technologies is the classification of newly recorded data. This paper surveys advances in parallelization in the field of classification rule induction.
Resumo:
The All-Weather Volcano Topography Imaging Sensor remote sensing instrument is a custom-built millimeter-wave (MMW) sensor that has been developed as a practical field tool for remote sensing of volcanic terrain at active lava domes. The portable instrument combines active and passive MMW measurements to record topographic and thermal data in almost all weather conditions from ground-based survey points. We describe how the instrument is deployed in the field, the quality of the primary ranging and radiometric measurements, and the postprocessing techniques used to derive the geophysical products of the target terrain, surface temperature, and reflectivity. By comparison of changing topography, we estimate the volume change and the lava extrusion rate. Validation of the MMW radiometry is also presented by quantitative comparison with coincident infrared thermal imagery.
Resumo:
Advances in hardware and software technology enable us to collect, store and distribute large quantities of data on a very large scale. Automatically discovering and extracting hidden knowledge in the form of patterns from these large data volumes is known as data mining. Data mining technology is not only a part of business intelligence, but is also used in many other application areas such as research, marketing and financial analytics. For example medical scientists can use patterns extracted from historic patient data in order to determine if a new patient is likely to respond positively to a particular treatment or not; marketing analysts can use extracted patterns from customer data for future advertisement campaigns; finance experts have an interest in patterns that forecast the development of certain stock market shares for investment recommendations. However, extracting knowledge in the form of patterns from massive data volumes imposes a number of computational challenges in terms of processing time, memory, bandwidth and power consumption. These challenges have led to the development of parallel and distributed data analysis approaches and the utilisation of Grid and Cloud computing. This chapter gives an overview of parallel and distributed computing approaches and how they can be used to scale up data mining to large datasets.
Resumo:
The Pax Americana and the grand strategy of hegemony (or “Primacy”) that underpins it may be becoming unsustainable. Particularly in the wake of exhausting wars, the Global Financial Crisis, and the shift of wealth from West to East, it may no longer be possible or prudent for the United States to act as the unipolar sheriff or guardian of a world order. But how viable are the alternatives, and what difficulties will these alternatives entail in their design and execution? This analysis offers a sympathetic but critical analysis of alternative U.S. National Security Strategies of “retrenchment” that critics of American diplomacy offer. In these strategies, the United States would anticipate the coming of a more multipolar world and organize its behavior around the dual principles of “concert” and “balance,” seeking a collaborative relationship with other great powers, while being prepared to counterbalance any hostile aggressor that threatens world order. The proponents of such strategies argue that by scaling back its global military presence and its commitments, the United States can trade prestige for security, shift burdens, and attain a more free hand. To support this theory, they often look to the 19th-century concert of Europe as a model of a successful security regime and to general theories about the natural balancing behavior of states. This monograph examines this precedent and measures its usefulness for contemporary statecraft to identify how great power concerts are sustained and how they break down. The project also applies competing theories to how states might behave if world politics are in transition: Will they balance, bandwagon, or hedge? This demonstrates the multiple possible futures that could shape and be shaped by a new strategy. viii A new strategy based on an acceptance of multipolarity and the limits of power is prudent. There is scope for such a shift. The convergence of several trends—including transnational problems needing collaborative efforts, the military advantages of defenders, the reluctance of states to engage in unbridled competition, and hegemony fatigue among the American people—means that an opportunity exists internationally and at home for a shift to a new strategy. But a Concert-Balance strategy will still need to deal with several potential dilemmas. These include the difficulty of reconciling competitive balancing with cooperative concerts, the limits of balancing without a forward-reaching onshore military capability, possible unanticipated consequences such as a rise in regional power competition or the emergence of blocs (such as a Chinese East Asia or an Iranian Gulf), and the challenge of sustaining domestic political support for a strategy that voluntarily abdicates world leadership. These difficulties can be mitigated, but they must be met with pragmatic and gradual implementation as well as elegant theorizing and the need to avoid swapping one ironclad, doctrinaire grand strategy for another.
Resumo:
We investigate the scaling between precipitation and temperature changes in warm and cold climates using six models that have simulated the response to both increased CO2 and Last Glacial Maximum (LGM) boundary conditions. Globally, precipitation increases in warm climates and decreases in cold climates by between 1.5%/°C and 3%/°C. Precipitation sensitivity to temperature changes is lower over the land than over the ocean and lower over the tropical land than over the extratropical land, reflecting the constraint of water availability. The wet tropics get wetter in warm climates and drier in cold climates, but the changes in dry areas differ among models. Seasonal changes of tropical precipitation in a warmer world also reflect this “rich get richer” syndrome. Precipitation seasonality is decreased in the cold-climate state. The simulated changes in precipitation per degree temperature change are comparable to the observed changes in both the historical period and the LGM.
Resumo:
The leaf carbon isotope ratio (δ13C) of C3 plants is inversely related to the drawdown of CO2 concentration during photosynthesis, which increases towards drier environments. We aimed to discriminate between the hypothesis of universal scaling, which predicts between-species responses of δ13C to aridity similar to within-species responses, and biotic homoeostasis, which predicts offsets in the δ13C of species occupying adjacent ranges. The Northeast China Transect spans 130–900 mm annual precipitation within a narrow latitude and temperature range. Leaves of 171 species were sampled at 33 sites along the transect (18 at ≥ 5 sites) for dry matter, carbon (C) and nitrogen (N) content, specific leaf area (SLA) and δ13C. The δ13C of species generally followed a common relationship with the climatic moisture index (MI). Offsets between adjacent species were not observed. Trees and forbs diverged slightly at high MI. In C3 plants, δ13C predicted N per unit leaf area (Narea) better than MI. The δ13C of C4 plants was invariant with MI. SLA declined and Narea increased towards low MI in both C3 and C4 plants. The data are consistent with optimal stomatal regulation with respect to atmospheric dryness. They provide evidence for universal scaling of CO2 drawdown with aridity in C3 plants.
Resumo:
Causal attribution has been one of the most influential frameworks in the literature of achievement motivation, but previous studies considered achievement attribution as relatively deliberate and effortful processes. In the current study, we tested the hypothesis that people automatically attribute their achievement failure to their ability, but reduce the ability attribution in a controlled manner. To address this hypothesis, we measured participants’ causal attribution belief for their task failure either under the cognitive load (load condition) or with full attention (no-load condition). Across two studies, participants attributed task performance to their ability more in the load than in the no-load condition. The increased ability attribution under cognitive load further affected intrinsic motivation. These results indicate that cognitive resources available after feedback play crucial roles in determining causal attribution belief, as well as achievement motivations. (PsycINFO Database Record (c) 2013 APA, all rights reserved)(journal abstract)
Resumo:
In this study, dual-hop channel state information-assisted amplify-and-forward (AF) cooperative systems in the presence of in-phase and quadrature-phase (I/Q) imbalance, which refers to the mismatch between components in the I and Q branches, are investigated. First, the authors analyse the performance of the considered AF cooperative protocol without compensation for the I/Q imbalance as the benchmark. Then, a compensation algorithm for the I/Q imbalance is proposed, which makes use of the received signals at the destination, from the source and the relay nodes, together with their conjugations to detect the transmitted signal. Moreover, the authors study the considered AF cooperative system implemented with the opportunistic relay selection and the proposed compensation mechanism for the I/Q imbalance. The performance of the AF cooperative system under study is evaluated in terms of average symbol error probability, which is derived by considering transmission in a Rayleigh fading environment. Numerical results are provided and show that the proposed compensation algorithm can efficiently mitigate the effect of the I/Q imbalance. On the other hand, it is observed that the AF cooperative system with opportunistic relay selection acquires a performance gain beyond that without relay selection.